National Atmospheric Deposition Program

Mercury Deposition Network

Mercury Analytical Laboratory 2006 Annual Quality Assurance Report

Prepared by: Gerard Van der Jagt

Table of Contents

Defi	nitions of Acronyms and Abbreviations	3
1.	Introduction	5
2.	Quality Assurance	
3.	Quality Control	8
4.	Calculations	20
5.	Analytical Run Sequence	21
6.	Proficiency Tests and Laboratory Intercomparisons	22
7.	Field Quality Control	23
8.	Quality Rating Codes	25
Appen	dix A	27
	dix B	
QC Su	ımmary Tables	37

Definitions of Acronyms and Abbreviations

	iis oi Acionyiiis and Abbievialic
CAL	Central Analytical Lab
CCB	Continued Calibration Blank
CCV	Continued Calibration Verification
COC	Chain of Custody
CRM	Certified Reference Material
CVAFS	The state of the s
DQO	
EMOF	
HAL	
ICB	
ICV	
MD	
MDL	
MDN	Mercury Deposition Network
MOF	Mercury Observer Form
MS	•
MSD	
NADP	
NED	Network Equipment Depot
OPR	Ongoing Precision and Recovery
PB	Preparation Blanks Performance Evaluation
PE PT	
QA/QC	
QAP	Quality Assurance/Quality Control Quality Assurance Plan
QR	Quality Rating Code
RL	Reporting Limit
RPD	Relative Percent Difference
ואו ט	Notative i electif Dilletelle

SOP Standard Operating Procedure SRM Standard Reference Materia

1. Introduction

Since January 1996, Frontier GeoSciences Inc. (FGS) has served as the Mercury Analytical Laboratory (HAL) and Site Liaison Center for the Mercury Deposition Network (MDN). MDN, coordinated through the National Atmospheric Deposition Program (NADP), was designed with the primary objective of quantifying the wet deposition of mercury in North America to determine long-term geographic and temporal distributions. MDN has grown to incorporate over 97 sites in the United States and Canada. In 2007, MDN is expected to incorporate 10-15 additional new sites.

As the HAL, FGS receives weekly precipitation samples to be analyzed for total mercury. HAL also analyzes samples for methylmercury from selected sites participating in the methylmercury program. The analytical technique — Modified EPA Method 1631 Revision B — was developed by Nicolas S. Bloom, one of FGS' founders. FGS also served as the referee lab for the Method 1631 final validation study.

Robert Brunette, Principle Investigator and HAL Director, oversees FGS's involvement in MDN. He serves as the HAL contact for the multiple agencies currently sponsoring MDN. His multiple roles require him to provide guidance and direction to all HAL staff and to maintain proficiency in all aspects of HAL activities, including MDN site selection and equipment installation, MDN equipment troubleshooting, field and laboratory training, analysis and report writing, as well as research on new MDN initiatives including Trace Metals (in addition to mercury) in Wet Deposition.

Mr. Brunette is assisted by Gerard Van der Jagt - the MDN Project Manager, and an analytical laboratory staff skilled in processing incoming samples, analyzing sample sets, cleaning glassware, shipping weekly field equipment, and entering data. Senior Research Scientist, Eric M. Prestbo, serves as a Science Advisor for HAL, and helps support MDN related research initiatives. The HAL Director also works closely with FGS' Laboratory Manager, Patrick Strickland and FGS' Quality Assurance Officer, Shelly Fank, to ensure that all Quality Control (QC) parameters are consistently maintained, and that FGS' standards of professional and scientific quality are met.

FGS continued to maintain and demonstrate acceptable quality control in 2006. Due to the addition of new MDN sites, the number of quality control points increased from about 1,600 in 2005, to more than 1,750 quality control measurements in 2006. FGS demonstrated consistency and reproducibility in bottle blanks, preparation blanks, certified reference materials, matrix duplicates, and matrix spikes. All of these parameters are plotted in control charts in this report.

Outlook

The MDN continues to gain attention as the largest and longest-running national mercury wet deposition network in North America. Feedback from sponsors and other interested organizations indicates that MDN will experience significant growth in 2007-2008. With this growth, HAL will continue to look for ways to improve the program to ensure the highest quality. The following are goals HAL has set to maintain and improve quality throughout 2007-2008:

HAL will continue to improve our database in 2007.

HAL will continue trace metals in wet deposition research in 2007. There is a strong indication that there are many sponsors that will want to participate in a combined mercury and trace metals program. In 2006, five MDN sites were collecting samples for trace metals following HAL's retrofit and trace metal standard operating procedures.

HAL research in dry deposition of mercury and trace metals in sites in the southern U.S. will continue, likely through 2007. HAL expects this research to lay the groundwork for a potential non-NADP product for interested MDN sponsors.

2. Quality Assurance

2.1. Philosophy and Objectives

Frontier GeoSciences Inc. (FGS) is committed to a rigorous quality assurance program and philosophy. Quality control begins at the bench level. Process improvements are continuously solicited from laboratory technicians and analysts. Management is active in evaluating and implementing feasible improvements. The Quality Assurance program is a system for ensuring that all information, data, and interpretation resulting from an analytical procedure are technically sound, statistically valid, and appropriately documented.

HAL data quality is assessed against FGS' Data Quality Objectives (DQO). Our DQOs consist of five components: precision, accuracy, representativeness, comparability, and completeness.

- Precision is a measure of data reproducibility. HAL assesses analytical precision using matrix duplicates. The acceptance criterion for matrix duplicates is ≤ 25 RPD.
- Accuracy is a measure of how close experimental data is to a "true" value. HAL assesses
 accuracy using certified reference materials and matrix spikes. The acceptance criterion for
 reference materials and matrix spikes is 75-125% recovery.
- Representativeness is a measure of how typical a sample is compared to the sample population. It is achieved by accurate, artifact-free sampling procedures and appropriate sample homogenization.
- Comparability is a measure of how variable one set of data is to another. Control charts
 enable HAL to assess comparability over the course of an ongoing monitoring project such
 as MDN.
- Completeness is measured by the number of usable data points compared to the number of possible data points. The HAL DQO for the MDN project is at least 95% completeness.

2.2. Method Detection Limits

Method detection limit (MDL) studies are maintained for most matrix/analyte combinations available at FGS. Studies are performed using the protocols in 40 CFR, Section 136, Appendix B. Specifically; seven or more low-level, matrix-specific spikes are processed according to preparation and analytical method protocols. MDL is determined as t*SD of the replicates (where t is the Student's T-value for the number of replicates and SD is the standard deviation). The HAL updates MDL studies periodically for the MDN project. See Appendix A for the latest MDL study results.

2.3. Accreditations

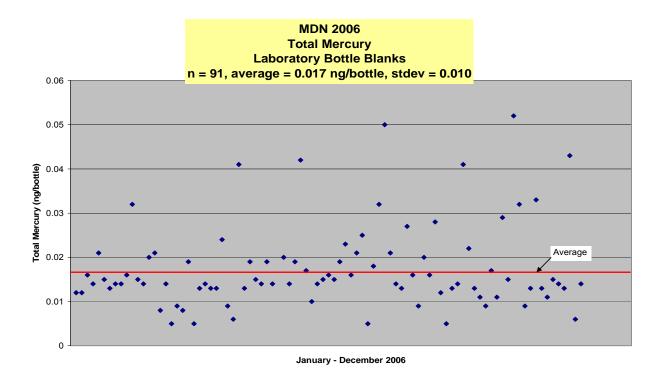
FGS currently holds certifications through departments in eight states: the California Department of Health, the Florida Department of Health, the Louisiana Department of Environmental Quality, the Minnesota Department of Health, the New Jersey Department of Environmental Protection, the New York Department of Health, the Washington Department of Ecology, and the Wisconsin Department of Natural Resources. The Florida Department of Health acts as FGS' primary accreditor under the National Environmental Laboratory Accreditation Program (NELAP).

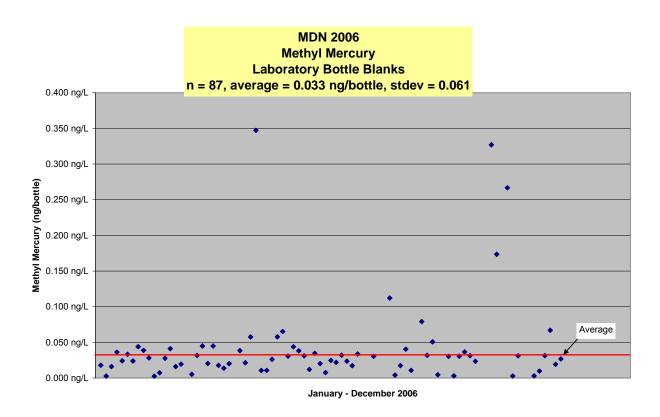
3. Quality Control

Quality Control (QC) samples each have an expected target value that can be used to objectively assess preparation and analytical method performance. If performance on these known samples is acceptable, client sample results and other *unknowns* are assumed to be acceptable, as well. Conversely, unacceptable QC results require immediate troubleshooting and re-assessment of affected sample results. The HAL utilizes nine types of QC samples for the MDN project: laboratory bottle blanks, preparation blanks, ongoing calibration standards, ongoing calibration blanks, matrix duplicates, matrix spikes, certified reference materials, field blanks, and system blanks.

3.1. Laboratory Bottle Blanks

3.1.1.Description


Following cleaning, HAL bottles are charged with 20mL of 1% hydrochloric acid. A random selection of these bottles is then analyzed for total mercury.


3.1.2.Purpose

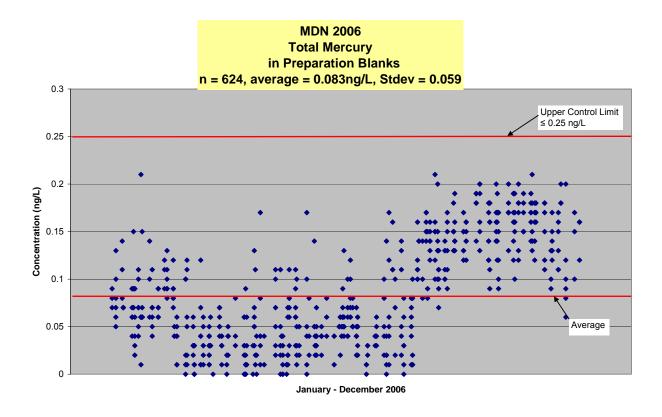
Even in an ultra-clean laboratory, mercury exposure is inherent to the handling of MDN sample bottles. Because such contamination is inevitable, it must be analyzed and quantified so that it can be objectively subtracted from final sample results.

3.1.3.Discussion

In 2006, the mean of 91 laboratory bottle blanks was 0.017ng/bottle with a standard deviation of 0.010ng/bottle. In 2006, no laboratory bottle blank was higher than the total mercury MDL. The current MDL for total mercury is 0.13ng/L. In 2006, the mean of 87 laboratory blanks for methylmercury was 0.033ng/bottle with a standard deviation of 0.061ng/bottle. In 2006 there were several laboratory bottle blanks that were above the MDL for methyl mercury. The current MDL for methylmercury is 0.025ng/L. Laboratory bottle blanks are expected to be at or near MDL. In cases where the blanks are significantly higher, the situation is investigated. Possible contamination sources are researched and identified. Once the contamination has been isolated and corrected, the run is continued.

3.2. Preparation Blanks

3.2.1.Description


Preparation blanks for total mercury consist of bromine monochloride (BrCl), hydroxylamine hydrochloride, and stannous chloride in 100mL of reagent water. Preparation blanks for methylmercury consist of hydrochloric acid, ammonium pyrrolidine dithiocarbamate (APDC) solution, ethylating agent, acetate buffer, and reagent water. The MDN control limit for total mercury is currently set at 0.25ng/L. This control limit is lower than the US EPA method 1631 method blank, which is set at 0.5 ng/L. The MDN control limit for methyl mercury is currently set at 0.025 ng/L. US EPA method 1630 states that the mean of the three method blanks should be less than 0.045ng/L and the varialbility should be less than 0.015 ng/L.

3.2.2.Purpose

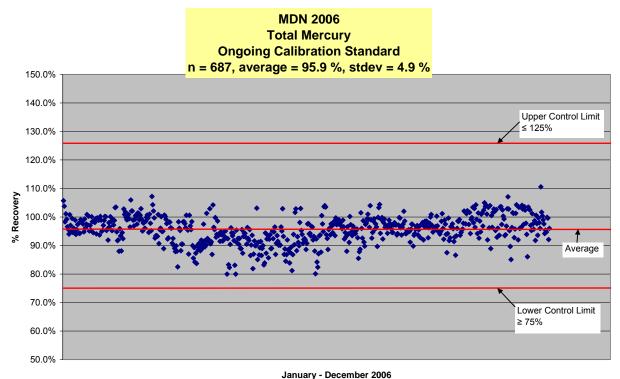
Mercury content is inherent even in FGS' preparatory and analytical reagents. All reagents are tested low in THg prior to use. Preparation blanks are a measure of how much of each sample result can be attributed to these necessary reagents. Preparation Blanks also help when investigating possible sources of contamination.

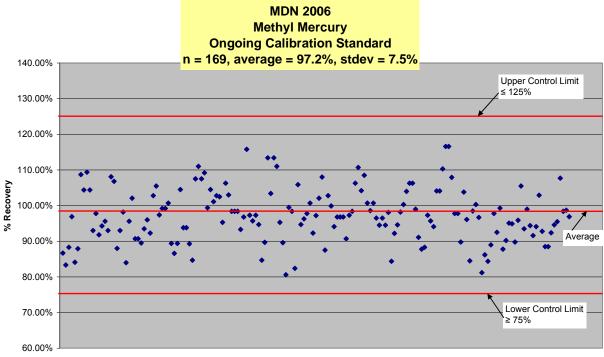
3.2.3.Discussion

In 2006, the mean for total mercury preparation blanks for 208 total Hg runs (3 preparation blanks per run x 208 total Hg runs = 624 preparation blanks) was 0.083ng/L with a standard deviation of 0.059ng/L. In 2006, no preparation blanks for total mercury were above the control limit of 0.25ng/L. There was an increase in the 4th Quarter 2006 in preparation blank Hg concentration that was observed. Although no preparation blanks exceeded Frontier's control limits, Frontier analytical staff, investigated this increase by checking the reagent split bottles and the BrCl bench working solution bottle. It was observed that the bench working solution bottle was higher than normal and potentially elevating the BrCl preparation blanks. The bottle was replaced and no further action was required, since all preparation blanks were still within the established control limits. In 2006, the mean for methylmercury preparation blanks for 44 analytical runs was 0.009ng/L with a standard deviation of 0.008ng/L. In 2006, the mean of the preparation blanks for methylmercury were all below the control limit of 0.025ng/L.

3.3. Ongoing Calibration Standards

3.3.1.Description


Ongoing calibration standards are continuously analyzed during the course of sample analysis, typically after a suite of ten samples and at the end of each analytical day. A 1.0ng standard for total mercury and a 0.1ng standard for methylmercury are typically analyzed as an ongoing calibration standard. The MDN control limits for total mercury are currently set at 75-125%. The control limits for US EPA method 1631, Ongoing Precision and Recovery (OPR) are currently set at 77-123%. The MDN control limits for methyl mercury are currently set at 75-125%. US EPA method 1630 has the OPR levels set at 67-133%.


3.3.2.Purpose

Ongoing calibration standards verify that the analytical system is in control. All total mercury standard solutions are traceable to certified standards or manufacturer lot number. Currently there is no commercially available methylmercury standard. FGS produced its own methyl mercury standard. All raw data references a unique laboratory ID number for associated standards. This ID may then be traced through the standards logbooks to the original shipment, container, and certification.

3.3.3.Discussion

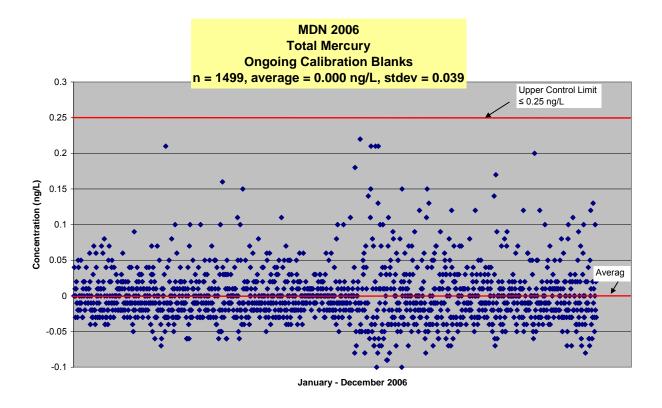
In 2006, the mean of 687 ongoing calibration standard recoveries for total mercury was 95.9% with a standard deviation of 4.9%. In 2006, no ongoing calibration standards were out of statistical control. In 2006, the mean of 169 ongoing calibration standard recoveries for methylmercury was 97.2% with a standard deviation of 7.5 %. There were no ongoing calibration standard recoveries for the MDN project in 2006 that were out of statistical control.

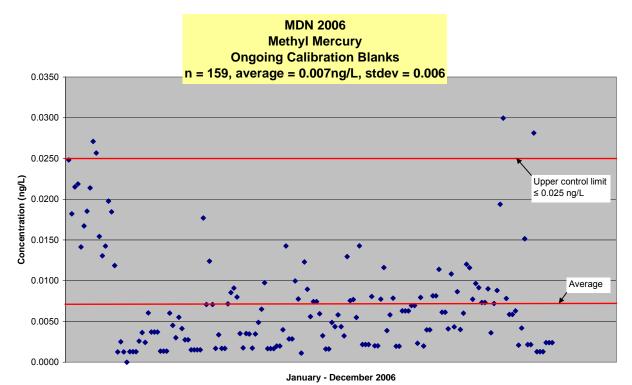
January - December 2006

3.4. Ongoing Calibration Blanks

3.4.1.Description

Ongoing calibration blanks are continuously analyzed during the course of sample analysis, typically after a suite of ten samples and at the end of each analytical day. The MDN control limit for total mercury is currently set at 0.25ng/L, which is also the control limit for US EPA method 1631. The MDN control limit for methyl mercury is currently set at 0.025 ng/L. US EPA method 1630 has no set ongoing calibration blank level.


3.4.2.Purpose


Instrument Ongoing calibration blanks are used to demonstrate freedom from system contamination, carryover, and to monitor baseline drift.

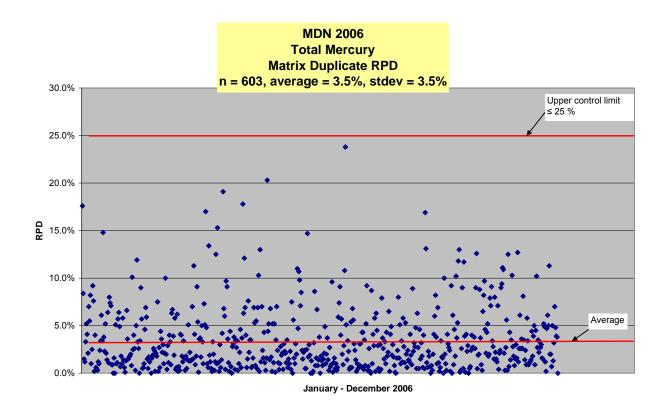
3.4.3. Discussion

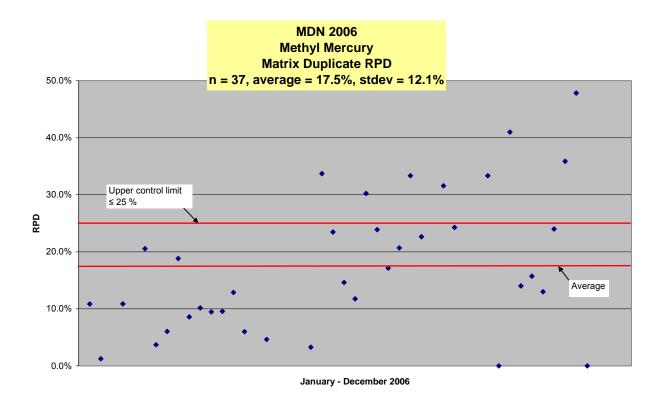
In 2006, the mean concentration of 1499 ongoing calibration blanks for total mercury was 0.000ng/L with a standard deviation of 0.039. There were no ongoing calibration blanks for the MDN project in 2006 that were above the upper control limit (0.25ng/L). In 2006, the mean concentration of 159 ongoing calibration blanks for methylmercury was 0.007ng/L with a standard deviation of 0.007. There were four ongoing calibration blanks for methylmercury that were above the upper control limit (0.025ng/L).

Ongoing calibration blanks are expected to be at or near MDL. In cases where the blanks are significantly higher, the situation is investigated. Possible contamination sources are researched and identified. Once the contamination has been isolated and corrected, the run is continued.

3.5. Matrix Duplicates

3.5.1.Description


Matrix duplicates are created when an existing sample is split into two portions that can then be compared analytically. The MDN control limits for the matrix duplicates is currently set at 25%. US EPA methods 1630 and 1631 do not require a matrix duplicate.


3.5.2.Purpose

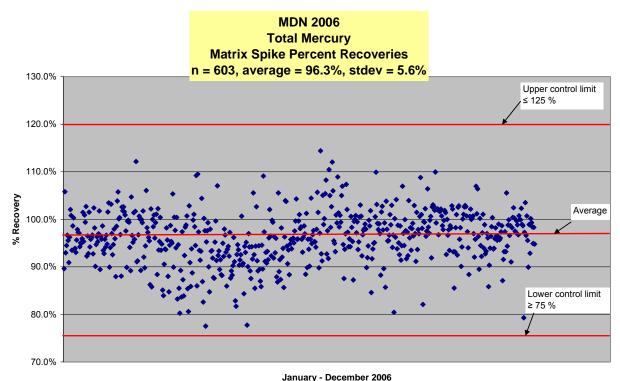
As there is no theoretical difference between a pair of matrix duplicates, their relative percent difference (RPD) is expected to be less than 25%. Out of control results are indicative of a heterogeneous sample matrix and/or poor analytical precision.

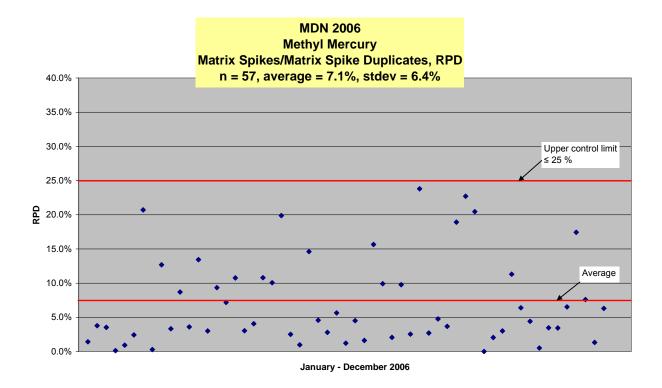
3.5.3.Discussion

In 2006, the mean RPD of 603 matrix duplicate pairs for total mercury was 3.5% with a standard deviation of 3.5%. This low mean reflects the homogeneous nature of the MDN sample matrix, as well as the analytical precision of HAL. In 2006, the mean RPD of 37 matrix duplicate pairs for methylmercury was 17.5% with a standard deviation of 12.1%. Several RPDs were above the 25% RPD acceptance level. However, all of these matrix duplicates concentrations were less than or equal to five times the MDL. At such low concentrations, variability is expected to increase. Therefore, the larger RPD values at low concentrations are not of concern. No corrective action was taken.

3.6. Matrix Spikes

3.6.1.Description


A matrix spike is created when an MDN sample with known mercury content is supplemented with an additional 1.00ng of mercury standard. The MDN control limits for total mercury are currently set at 75-125%. The control limits for US EPA method 1631, for matrix spikes and matrix spike duplicates are currently set at 71-125%. The MDN control limits for methyl mercury are currently set at 75-125%. US EPA method 1630 has the matrix spike and matrix spike duplicates levels set at 65-135%.


3.6.2.Purpose

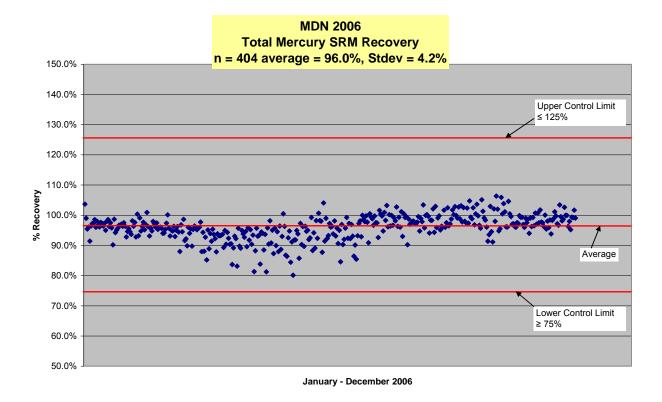
As the combined mercury content of the matrix spike sample is known in theory, matrix spike recoveries are expected to be within 75% and 125% of this theoretical value. Matrix spike recoveries determine if, and how, the sample matrix interferes with target analyte recovery. They also ensure that HAL's preparation and analytical procedures do not result in significant analyte losses.

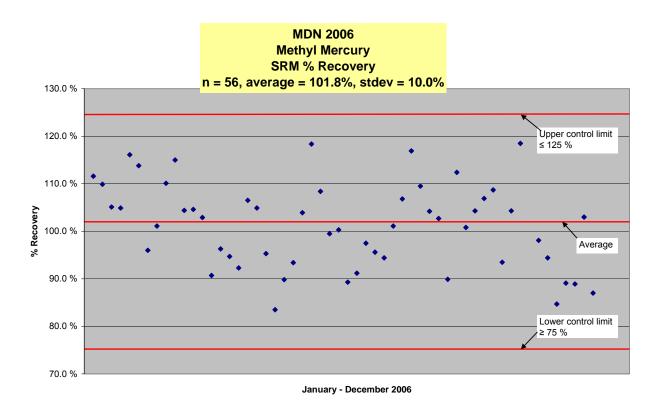
3.6.3. Discussion

In 2006, the mean of 603 matrix spike recoveries for total mercury was 96.3% with a standard deviation of 5.6%. There were no unacceptable matrix spike recoveries for the MDN project in 2006. This is indicative of a chemically passive sample matrix, as well as good analytical accuracy. Had any Matrix Spikes fallen outside the 75%-125% control limits, involved samples would have been rerun to investigate possible matrix interference. In 2006, the mean RPD of 57 matrix spike/matrix spike duplicates for methyl mercury was 7.1% with a standard deviation of 6.4%. No matrix spike/matrix spike duplicate RPD was above the acceptance criteria.

3.7. Certified Reference Materials

3.7.1.Description


Certified reference materials are commercially available samples containing known quantities of analyte in a specific matrix. Currently, there is no available Reference Material matching the MDN rainwater matrix. Instead, HAL uses National Institute of Standards and Technology Reference Material 1641d – Total Mercury in Water. For methylmercury, HAL uses National Research Council Canada Reference Material DORM-2. The MDN control limits for total mercury and methyl mercury are currently set at 75-125%. US EPA methods 1630 and 1631 do not require a certified reference material.


3.7.2.Purpose

Certified reference materials are used to demonstrate HAL's ability to recover a target analyte from a specific matrix. They are also a secondary source for verifying the validity of the analytical curve.

3.7.3.Discussion

In 2006, the mean of 404 certified reference material recoveries for total mercury was 96.0% with a standard deviation of 4.2%. For methylmercury, the mean of 56 certified reference material recoveries was 101.8% with a standard deviation of 10.0%. In 2006, there were no recoveries outside the control limits for total and methylmercury. Failing recoveries are immediately rerun to ensure that the analytical failure is isolated rather than systemic.

4. Calculations

Calculations have been color-coded in instances where results become variables in subsequent calculations.

4.1. Calculation: Gross MDN Sample Concentration

```
Calc 1) {(Sample PA - Ave BB) / Slope} - {(Aliquot * BrCl RB) / 100} = ng Hg/aliquot (mL)

Sample PA = sample peak area (PA units)

Ave BB = average bubbler blank (PA units)

Slope = slope (PA units/ng)

Aliquot = volume of sample analyzed (mL)

BrCl RB = BrCl reagent blank value (ng/mL of preservative)

1/100 = correction for 1% preservation concentration
```

4.2. Calculation: Net MDN Sample Concentration

```
ng Hg/aliquot (mL) * mL / Sample Bottle = ng Hg/Sample Bottle

ng Hg/Sample Bottle – ng Hg/Quarterly Bottle Blank = net ng Hg/Sample Bottle

net ng Hg/Sample Bottle * (Sample Bottle / mL) * 1000 = net ng Hg/L
```

4.3. Calculation: MDN Deposition

```
(\text{net ng Hg/L}) * (\text{precip vol (mL}) / 120.0 \text{cm}^2) * (1/1000 \text{mL}) * (10000 \text{cm}^2/\text{m}^2) = (\text{ng/m}^2)

Alternatively, because there are 10000 cm² in 1m²:
```

```
(net ng Hg/L) * (precip vol (mL)_/ 120.0cm<sup>2</sup>)*10 = (ng/m<sup>2</sup>)
```

```
120.0cm<sup>2</sup> = Area of MDN Funnel
Precip volume (mL) = Precipitation Volume — see below
```

The standard rain gauge (Belfort) is used for the precipitation volume when the rain gauge data has passed Quality Assurance.

Precip volume (Rain Gauge (mL)) = Inches of Rain (rain gauge) * (825mL / Inch Belfort)

When the standard rain gauge (Belfort) has not passed Quality Assurance, the Bottle Catch is used to calculate deposition (as long as the Event Recorder shows that the collector worked properly).

Precip volume (Bottle Catch (mL)) = Total mL of sample captured in MDN Sample Bottle minus 20mL preservative

5. Analytical Run Sequence

HAL routinely includes the aforementioned QC samples in all of its analyses for the MDN project. The following bench sheet shows how these samples are arranged within a typical analysis day. For every set of ten samples analyzed, the sample set is preceded and followed with a matrix duplicate, a matrix spike, ongoing calibration standard, and an ongoing calibration blank. In addition, after the twentieth sample an additional reference material sample is analyzed.

	ecipi1 Analysis		n Sample A	nalysis Lab Sheet				FGS D	DATA SET ID: TA SET CODE:	
	And	alyzer: nalyst:		REVIEWER:					DATE:	
l ytical uplicat	Run e Analy	sis			S=Sampl	e Spike @	Trap Set: 0 1.00ng			
Run	Тр	Bub	HAL Code	Sample ID	PA	% BrCl	Aliquot Volume	THg per Aliquot	THg Conc (Net)	Remarks
1	1	1		4.00 ng						
2	2	2		2.00 ng						
3	3	3		1.00 ng						
4	4	4		0.50 ng						
5	5	1		0.05 ng	1	_				
<u>6</u> 7	6 7	3		BB-1 BB-2	1	+ -			 	
8	8	4		BB-3	+	+ - 1		 	+	
9	9	1		NIST1641d		2		<u> </u>	† †	
10	10	2		BrCl-1		+ -		 	1	
11	10	_		BrCl-2		+		 	17.	
12	2	3		BrCI-2 BrCI-3		+ +		1	Key	
13	3	1		BB-4		-				
14	4	2		Sample #1	1	+		 	Referen	ce materials
						-		-	- 11010101	ice material
15	5	3		Sample #1 D						
16	6	4		Sample #1 5					Prepara	tion blanks
17 18	7 8	1 2		Sample #2 Sample #3	1	-		1		
19	9	3		Sample #3	1	+			Motnir	dumliaataa
20	10	4		Sample #5	1				Maurix	duplicates
21	1	i		Sample #6						
22	2	2		Sample #7					Matrix	snikes
23	3	3		Sample #8					Matrix	ортков
24	4	4		Sample #9						
25	5	1		Sample #10					Ongoin	g calibration
26 27	7	3		1.00 BB-5		_		1		
28	8	4		Sample #11					Onacin	a aalibuatian
29	9	3		Sample #12					Ongoin	g calibratior
30	10	4		Sample #13						
31	1	1		Sample #14						
32	2	2		Sample #15						
33	3	3		Sample #16						
34	4	4		Sample #17						
35 36	5 6	2		Sample #18 Sample #19	1	+				
37	7	3		Sample #20	1	+ +		-	1	
38	8	4		Sample #11 D				İ	† †	
39	9	3		Sample #11 S						
40	10	4	-	1.00			•			
41	1	1	·	BB-6				ļ	ļ	
42 43	2	2		NIST1641d		+		.	1	
43 44	3	3		Sample #21 Sample #22	1	+		-	+ +	
45	5	1		Sample #23	+	+ -		 	+	
46	6	2		etc	1	1		1	†	
47	7	3		2.0	1				1	
48	8	4								
49	9	1								
50	10	2				\perp		ļ	ļ	
51	1	3			1	1			 	
52 53	3	4		Sample #21 D		+ -		 	 	
54	4	2		Sample #21 D Sample #21 S		+ +		 	+	
55	5	3		1,00		+ - 1		t	+	
56	6	4		BB-7		_			+	

6. Proficiency Tests and Laboratory Intercomparisons

Proficiency tests (PT) and laboratory intercomparisons are an important part of the Quality Assurance Program. Each year, FGS completes at least four PTs representing a suite of trace metals in wastewater and solid waste matrices. While these studies are a requirement of accreditation, they are also a valuable tool for internal quality control.

6.1. Proficiency Tests

The following proficiency tests were completed by HAL during 2006. Results for these tests are available upon request.

Table 1

Non-Potable Water / Solid and Hazardous Waste Proficiency Study	New York Department of Health	01/2006
Soils	Analytical Products Group	04/2006
Water Pollution	ERA	06/2006
Non-Potable Water / Solid and Hazardous Waste Proficiency Study	New York Department of Health	08/2006
Water Pollution	DMRQA	10/2006
Soils	Analytical Products Group	12/2006
Water Pollution	Analytical Products Group	12/2006

6.2. Laboratory Intercomparisons

The HAL participates in a U.S. Geological Survey PE sample laboratory intercomparison program. This program is coordinated by the USGS.

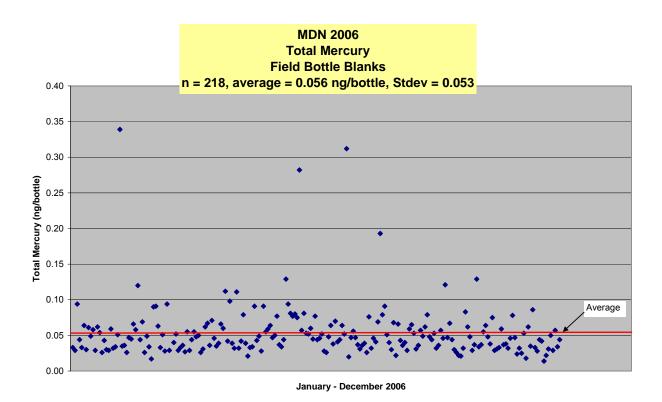
FGS did not participate in any laboratory intercomparisons in 2006.

7. Field Quality Control

The MDN network utilizes two different procedures to ensure that the sample train is not compromised. The two procedures are field blanks and system blanks.

7.1. Field Bottle Blanks

7.1.1.Description


A field bottle blank has the same contents as a laboratory bottle blank. However, this blank is left exposed at the sampling site for the entire collection period without any collector openings. All field bottle blanks that maintain at least 15mL of the initial 20mL 1% hydrochloric acid charge are then analyzed for total mercury.

7.1.2.Purpose

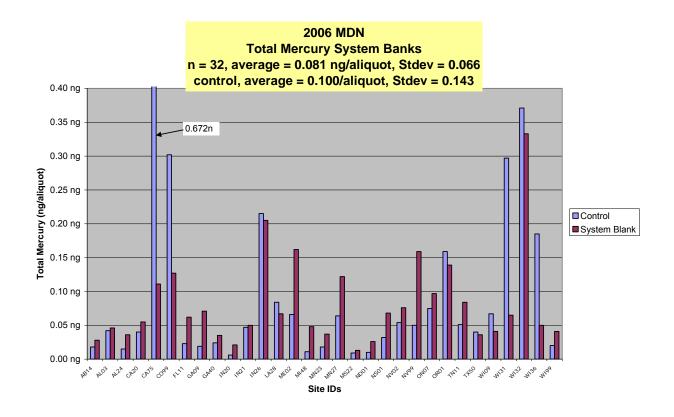
Outside of the controlled laboratory environment, ambient mercury levels increase and additional sample handling occurs. Because such contamination sources are inevitable, their contributions must be quantified so that they can be objectively subtracted from final sample results.

7.1.3.Discussion

In 2006, the mean of 218 Field Bottle Blanks was 0.056ng/bottle with a standard deviation of 0.053ng/bottle. This suggests that the MDN aerochem collector protects the sample train and bottle well and the field exposure is minimal.

7.2. Field System Blanks

7.2.1.Description

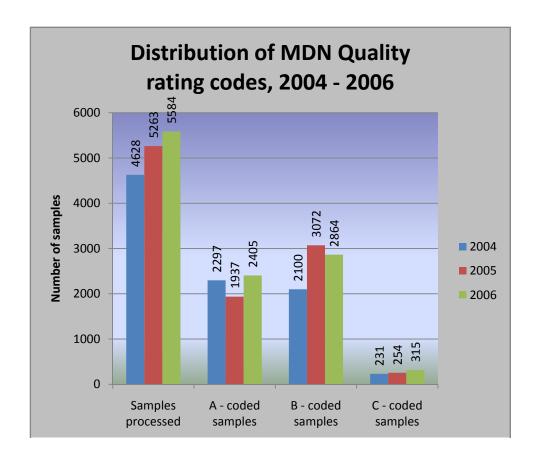

A field system blank is essentially a field bottle blank in which a solution is poured through the wet side collection sample train that was installed in the field for an entire week with no precipitation.

7.2.2.Purpose

This quality assurance program, conducted jointly by the U.S. Geological Survey and FGS, is intended to measure the effects of field exposure, handling, and processing on the chemistry of MDN precipitation samples.

7.2.3. Discussion

In 2006, the mean of 32 field system blanks was 0.081ng/aliquot with a standard deviation of 0.066ng/aliquot. This again suggests that the MDN sample train is well protected.


8. Quality Rating Codes

The quality rating code (QR) is designed as a user-friendly method to indicate the overall quality of each individual MDN data value. The MDN QR is modeled directly from the NADP AirMon QR. The QR code is what the general user of the final database will use in the evaluation of MDN data. This QR code is assigned by the computer program based on the results of the notes codes given to each MDN sample. A general description of each code follows.

- A. Valid samples with no problems; contained only precipitation; all sampling and laboratory protocols were followed; all required equipment was installed and operating properly.
- B. Valid samples with minor problems; may have contaminants such as insects or other debris; there may be an exception to approved sampling or laboratory methods; required equipment may be lacking or not operating properly. The laboratory does not consider these problems sufficient to invalidate the data, but there is more uncertainty than for A data. These data are used along with A data to calculate average concentrations and deposition.
- C. Invalid samples; major problems occurred; the laboratory does not have confidence in the data.

The HAL processed 5584 samples in 2006. 2405 samples received a QR code of A, 2864 received a B QR code, and 315 received a C QR code. FGS continued to maintain and demonstrate acceptable quality control in 2006.

Appendix A

Matrix Specific MDL Studies

Matrix Specific MDN MDL Study:

April 13, 2006

Frontier Geosciences Inc. 414 Pontius North Seattle, WA 98109

Objective. Determine the method detection limit (MDL) for total mercury in water using preservation method FGS-012 and analysis method FGS-MDN-05, and following the protocols outlined in 40 CFR 136. As detailed below, the MDL for Total Mercury in Water was determined to be **0.12** ng/L THg.

<u>Analytical Method.</u> A calibration was performed according to FGS-MDN-05. Briefly, this method incorporates oxidation with the addition of BrCl, reduction of Mercury in the sample aliquot with SnCl₂, analysis by purge and trap and dual amalgamation CV-AFS.

The MDL study consisted of the analysis of ten replicates of a water sample spiked with 0.5 ng/L THg oxidized with 1% BrCl. Two results were removed from the MDL calculations. MDL replicate 4 was mistakenly double spiked during analysis. MDL replicate 10 was analyzed at a different aliquot due to insufficient volume and could not be compared with the other nine replicates. The results of these measurements are found in the table on the next page, as well in the raw data sheets (ID # THg9-060413-1). All results are reported *corrected* for the method blanks.

<u>MDL Calculation.</u> Using 40 CFR 136, the MDL was calculated using the standard deviation of the spiked samples, with n = 8 replicates (7 degrees of freedom). In this case, the t value of 2.998 was used in the following equation, where σ is the standard deviation of the results obtained on samples spiked at a level near the MDL.

 $MDL = t*\sigma$

The MDL calculated from these data is (2.998)*(0.040), or 0.12 ng/L.

Total Mercury in Water (THg) MDN MDL Study Data for CV-AFS #9

April 13, 2006

Sample	[THg], ng/L	% Recovery
method blank #1	0.011	
method blank #2	0.012	
method blank #3	0.003	
Mean	0.009	
SD	0.005	
MDL-1 (0.5 ng/L)	0.517	103.4
MDL-2 (0.5 ng/L)	0.499	99.8
MDL-3 (0.5 ng/L)	0.480	96.0
MDL-5 (0.5 ng/L)	0.494	98.8
MDL-6 (0.5 ng/L)	0.511	102.2
MDL-7 (0.5 ng/L)	0.414	82.8
MDL-8 (0.5 ng/L)	0.540	108.0
MDL-9 (0.5 ng/L)	0.534	106.8
Mean	0.499	99.7
SD	0.040	7.9
NIST1641d	1588542	99.2
certified value NIST 1641d	1601000	

Matrix Specific MDN MDL Study:

April 13, 2006

Frontier Geosciences Inc. 414 Pontius North Seattle, WA 98109

<u>Objective.</u> Determine the method detection limit (MDL) for total mercury in water using preservation method FGS-012 and analysis method FGS-MDN-05, and following the protocols outlined in 40 CFR 136. As detailed below, the MDL for Total Mercury in Water was determined to be <u>0.13</u> ng/L THg.

<u>Analytical Method.</u> A calibration was performed according to FGS-MDN-05. Briefly, this method incorporates oxidation with the addition of BrCl, reduction of Mercury in the sample aliquot with SnCl₂, analysis by purge and trap and dual amalgamation CV-AFS.

The MDL study consisted of the analysis of ten replicates of a water sample spiked with 0.5 ng/L THg oxidized with 1% BrCl. One result was removed from the MDL calculations. MDL replicate 10 was analyzed at a different aliquot due to insufficient volume and could not be compared with the other nine replicates. The results of these measurements are found in the table on the next page, as well in the raw data sheets (ID # THg10-060413-1). All results are reported *corrected* for the method blanks.

<u>MDL Calculation.</u> Using 40 CFR 136, the MDL was calculated using the standard deviation of the spiked samples, with n = 9 replicates (8 degrees of freedom). In this case, the t value of 2.896 was used in the following equation, where σ is the standard deviation of the results obtained on samples spiked at a level near the MDL.

 $MDL = t*\sigma$

The MDL calculated from these data is (2.896)*(0.046), or 0.13 ng/L.

Total Mercury in Water (THg) MDN MDL Study Data for CV-AFS #10 April 13, 2006

Sample	[THg], ng/L	% Recovery
method blank #1	0.003	
method blank #2	0.008	
method blank #3	0.004	
Mean	0.005	
SD	0.003	
MDL-1 (0.5 ng/L)	0.514	102.8
MDL-2 (0.5 ng/L)	0.504	100.8
MDL-3 (0.5 ng/L)	0.425	85.0
MDL-4 (0.5 ng/L)	0.531	106.2
MDL-5 (0.5 ng/L)	0.504	100.8
MDL-6 (0.5 ng/L)	0.547	109.4
MDL-7 (0.5 ng/L)	0.505	101.0
MDL-8 (0.5 ng/L)	0.548	109.6
MDL-9 (0.5 ng/L)	0.593	118.6
Mean	0.519	103.8
SD	0.046	9.2
NIST1641d	1546232	96.6
certified value NIST 1641d	1601000	

Matrix Specific MDL Study:

April 12, 2006

Frontier Geosciences Inc. 414 Pontius North, Suite B Seattle, WA 98109

<u>Objective.</u> Determine the method detection limit (MDL) for methyl mercury in water, using distillation method FGS-013, and following the protocols outlined in 40 CFR 136. As detailed below, the MDL for Methyl Mercury in Water was determined to be <u>0.025 ng/L</u> MeHg.

<u>Analytical Method.</u> A calibration was performed according to FGS-070. Briefly, this method incorporates distillation followed by analysis utilizing aqueous phase ethylation, CV purge and trap, thermal desorption, GC separation, pyrolytic decomposition, and detection using CV-AFS.

The MDL study consisted of the distillation and analysis of ten waters spiked with 0.111 ng/L of MHg. Results for the ten measurements are found in the table on the next page, as well in the raw data sheets (ID # MHg7-060412-1). All results are reported **corrected** for the method blanks.

<u>MDL Calculation.</u> Using 40 CFR 136, the MDL was calculated using the standard deviation of the spiked samples, with n = 10 replicates (9 degrees of freedom). In this case, the t value of 2.821 was used in the following equation, where σ is the standard deviation of the results obtained on samples spiked at a level near the MDL.

 $MDL = t*\sigma$

The MDL calculated from these data is (2.821)*(0.009), or 0.025 ng/L.

Methyl Mercury in Water (MHg) MDL Study (CV-GC-AFS #7) April 12, 2006

Sample	[MeHg], ng/L	7
method blank #1	0.015	
method blank #2	0.008	
method blank #3	0.008	
Mean	0.010	
SD	0.004	
MDL #1+ 0.111 ng/L	0.111	100.0%
MDL #2+ 0.111 ng/L	0.107	96.4%
MDL #3+ 0.111 ng/L	0.101	91.0%
MDL #4+ 0.111 ng/L	0.108	97.3%
MDL #5+ 0.111 ng/L	0.103	92.8%
MDL #6+ 0.111 ng/L	0.115	103.6%
MDL #7+ 0.111 ng/L	0.115	103.6%
MDL #8+ 0.111 ng/L	0.109	98.2%
MDL #9+ 0.111 ng/L	0.086	77.5%
MDL #10+ 0.111 ng/L	0.111	100.0%
Mean	0.107	96.0
SD	0.009	0.1
DORM-2 (4470ug/L)	5063	113.3

Matrix Specific MDL Study: Methyl Mercury in Water (FGS-013, FGS-070) MDL Study Data for CV.GC.AFS #15

August 4, 2006 **MHg15-060725-1**

Frontier Geosciences Inc. 414 Pontius North Seattle, WA 98109

<u>Objective.</u> Determine the method detection limit (MDL) for methyl mercury in water, using the Distillation of Aqueous Samples for Methyl Mercury method FGS-013, and following the protocols outlined in 40 CFR 136. As detailed below, the MDL for Methyl Mercury in Water was determined to be <u>0.010 ng/L MHg.</u>

<u>Analytical Method.</u> A calibration was performed according to FGS-070. Briefly, this method incorporates the digestion and extraction followed by analysis utilizing aqueous phase ethylation, CV purge and trap, thermal desorption, GC separation, pyrolytic decomposition, and detection using CV-AFS.

The MDL study consisted of the distillation and analysis of ten water replicates spiked with 0.050 ng/L of MHg. The results of these measurements are found in the table on page 2, as well in the raw data sheets (ID # MHg15-060725-1). All results reported are **corrected** for the instrument blanks and the preparation blanks.

MDL Calculation. Using 40 CFR 136, the MDL was calculated using the standard deviation of the spiked samples, with n = 10 replicates (9 degrees of freedom). In this case, the t value of 2.821 was used in the following equation, where σ is the standard deviation of the results obtained on samples spiked at a level near the MDL.

 $MDL = t*\sigma$

The MDL calculated from these data is (2.821)*(0.004), or <u>0.010 ng/L MHg</u>.

<u>MDL Validation.</u> The dataset was peer reviewed and all qualifying parameters (ICV, CCV, CCB, LCS, R-value, etc.) passed. All ten replicates showed a percent recovery between 70-130% (85.5% \pm 7.4%), making this dataset eligible for determining either a PQL or an MDL.

For MDL validation, according to 40 CFR, the PQL must be within 1 to 10 times the MDL. For this dataset, the PQL is 4.777 times the MDL, thus validating the MDL value of 0.010 ng/L MHg.

Matrix Specific MDL Study: Methyl Mercury in Water (FGS-013, FGS-070) MDL Study Data for CV.GC.AFS #15

August 4, 2006 MHg15-060725-1

Frontier Geosciences Inc. 414 Pontius North Seattle, WA 98109

0.050 ng/L MHg

Sample	[MHg], ng/L
PBW-1	0.002
PBW-2	0.005
PBW-3	0.016
Mean	0.008
SD	0.008

	1		
	[MHg], ng/L	[TV], ng/L	[%Recovery]
Water MDL-1	0.039	0.050	78.2%
Water MDL-2	0.050	0.050	99.9%
Water MDL-3	0.041	0.050	81.9%
Water MDL-4	0.046	0.050	92.7%
Water MDL-5	0.045	0.050	89.1%
Water MDL-6	0.045	0.050	89.1%
Water MDL-7	0.037	0.050	74.6%
Water MDL-8	0.041	0.050	81.9%
Water MDL-9	0.041	0.050	81.9%
Water MDL-10	0.043	0.050	85.5%
Mean	0.043	0.050	85.5%
SD	0.004	0.000	7.4%
DORM-2	3494.755	4470.0	78.2%
BS	1.9	2.0	95.2%

MDL	0.010	failure (but included in calculation)
PQL (TV)/MDL	4.777	

Appendix B

QC Summary Tables

MDN ANALYSIS QC SUMMARY 2006 MDN QC Summary

Analysis		Calibration	BrCl Blk	SRM (Nist 164	1-d)	<u>Duplica</u>	ates_	<u>Spik</u>	<u>es</u>	<u>Bottl</u>	e Blanks
		R	Conc	TV=8.005 ng/mL	%Rec	Bottle ID	RPD	Bottle ID	%Rec.	Bottle ID	Conc
2006-001	1/16/2006	0.9990	0.070 ng/L	8.30 ng/mL	103.7%	MDN0081	1.5%	MDN0081	92.95%		
	CVAFS-9			7.92 ng/mL	99.0%	MDN2137 MDN2522	8.4% 17.6%	MDN2137 MDN2522	105.80% 89.65%		
2006-002	1/19/2006	0.9998	0.000 ng/L	7.64 ng/mL	95.4%	MDN0770	5.2%	MDN0770	95.55%		
	CVAFS-9			7.69 ng/mL	96.1%	MDN0811 MDN0866	1.2% 3.3%	MDN0811 MDN0866	94.50% 96.65%		
2006-003	2/8/2006	1.0000	0.090 ng/L	7.32 ng/mL	91.4%	MDN2168	4.1%	MDN2168	90.90%	MDN2198	0.015 ng/Bottle
	CVAFS-10			7.72 ng/mL	96.4%	MDN2648 MDN2714	7.0% 2.1%	MDN2648 MDN2714	102.05% 96.25%		
2006-004	1/19/2006	0.9999	0.100 ng/L	7.78 ng/mL	97.3%	MDN2546	5.5%	MDN2546	100.80%		
	CVAFS-10			7.78 ng/mL	97.3%	MDN2670 MDN3006	1.0% 8.2%	MDN2670 MDN3006	98.60% 93.50%		
2006-005	1/24/2006	0.9998	0.100 ng/L	7.89 ng/mL	98.6%	MDN1937	9.2%	MDN1937	93.70%	MDN2778	0.019 ng/Bottle
	CVAFS-10			7.68 ng/mL	96.0%	MDN2755 MDN3011	7.6% 2.5%	MDN2755 MDN3011	93.90% 100.30%		
2006-006	1/25/2006	0.9996	0.000 ng/L	7.84 ng/mL	98.0%	MDN1966	0.2%	MDN1966	93.05%		
	CVAFS-9			7.74 ng/mL	96.8%	MDN2212 MDN2607	0.6% 4.0%	MDN2212 MDN2607	97.85% 95.65%		
2006-007	2/3/2006	0.9997	0.030 ng/L	7.69 ng/mL	96.1%	MDN1928	1.2%	MDN1928	94.25%		
	CVAFS-9			7.81 ng/mL	97.6%	MDN2596 MDN2769	0.3% 0.5%	MDN2596 MDN2769	97.10% 97.25%		

2006-008	2/1/2006 CVAFS-9	0.9996	$0.050~\mathrm{ng/L}$	7.79 ng/mL 7.72 ng/mL	97.4% 96.4%	MDN0831 MDN2316 MDN2684	3.4% 1.0% 2.4%	MDN0831 MDN2316 MDN2684	95.95% 95.05% 94.95%		
2006-009	2/1/2006 CVAFS-10	0.9998	0.080 ng/L	7.79 ng/mL 7.60 ng/mL	97.4% 95.0%	MDN1760 MDN2694 MDN2753	14.8% 3.4% 6.1%	MDN1760 MDN2694 MDN2753	100.90% 95.35% 101.45%		
2006-010	2/2/2006 CVAFS-9	0.9998	0.100 ng/L	7.84 ng/mL	97.9%	MDN0832 MDN2498	2.3% 3.8%	MDN0832 MDN2498	102.70% 99.40%		
2006-011	2/9/2006 CVAFS-10	0.9998	0.090 ng/L	7.89 ng/mL 7.70 ng/mL	98.6% 96.3%	MDN0824 MDN2005 MDN2406	5.2% 2.1% 1.4%	MDN0824 MDN2005 MDN2406	92.25% 96.50% 92.80%		
2006-012	2/3/2006 CVAFS-10	0.9999	0.070 ng/L	7.80 ng/mL 7.67 ng/mL	97.5% 95.8%	MDN0135 MDN2352 MDN2739	8.0% 1.1% 6.4%	MDN0135 MDN2352 MDN2739	95.80% 94.20% 101.50%		
2006-013	2/8/2006 CVAFS-9	0.9999	$0.060~\mathrm{ng/L}$	7.22 ng/mL 7.90 ng/mL	90.2% 98.7%	MDN0405 MDN1959	0.9% 7.1%	MDN0405 MDN1959	92.75% 96.70%		
2006-014	2/17/2006 CVAFS-9	0.9995	0.050 ng/L	7.54 ng/mL 7.61 ng/mL	94.3% 95.1%	MDN2234 MDN0487 MDN0757	7.4% 1.6% 0.9%	MDN02234 MDN0487 MDN0757	96.15% 90.10% 102.40%	MDN2499	0.017 ng/Bottle
2006-015	2/6/2006 CVAFS-9	0.9997	0.050 ng/L	7.66 ng/mL 7.74 ng/mL	95.7% 96.7%	MDN0802 MDN0408 MDN2616	0.0% 0.0% 1.0%	MDN0802 MDN0408 MDN2616	98.20% 94.70% 95.30%	MDN0183	0.017 ng/Bottle
2006-016	2/6/2006 CVAFS-10	0.9998	0.090 ng/L	7.74 ng/mL 7.77 ng/mL	96.8% 97.1%	MDN2750 MDN0943 MDN2342	5.1% 5.7% 6.4%	MDN2750 MDN0943 MDN2342	96.30% 101.75% 89.45%	MDN2546 MDN2819	0.025 ng/Bottle 0.016 ng/Bottle
				Č		MDN2692	1.1%	MDN2692	96.95%		Ü

2006-017	2/9/2006	0.9997	0.060 ng/L	7.71 ng/mL	96.4%	MDN0833	0.7%	MDN0833	95.85%		
2000 017	CVAFS-9	0.5557	0.000 118, 12	7.80 ng/mL	97.5%	MDN2817	4.9%	MDN2817	96.50%		
	3,111,00			, 100 11g, 11111	71.070	MDN3017	1.8%	MDN3017	98.60%		
						11131 (301)	11070	1,1131 (301)	70.0070		
2006-018	2/15/2006	0.9996	0.090 ng/L	7.71 ng/mL	96.4%	MDN1943	5.8%	MDN1943	92.80%		
	CVAFS-9			7.43 ng/mL	92.8%	MDN1963	1.0%	MDN1963	93.45%		
						MDN1974	1.4%	MDN1974	95.80%		
2006-019	2/22/2006	0.9998	$0.080~\mathrm{ng/L}$	7.57 ng/mL	94.6%	MDN0922	1.3%	MDN0922	94.80%		
	CVAFS-9			7.65 ng/mL	95.6%	MDN2674	0.6%	MDN2674	94.15%		
						MDN2810	0.1%	MDN2810	96.65%		
2006-020	2/17/2006	1.0000	$0.080~\mathrm{ng/L}$	7.57 ng/mL	94.6%	MDN1734	1.5%	MDN1734	89.95%	MDN0665	0.016 ng/Bottle
	CVAFS-10			$7.50~\mathrm{ng/mL}$	93.7%	MDN2144	3.6%	MDN2144	103.45%		
						MDN2792	6.6%	MDN2792	101.55%		
2006-021	2/27/2006	1.0000	$0.100 \; \mathrm{ng/L}$	7.85 ng/mL	98.1%	MDN1984	1.7%	MDN1984	94.05%		
	CVAFS-10			7.71 ng/mL	96.4%	MDN1983	2.0%	MDN1983	97.00%		
						MDN2656	1.8%	MDN2656	103.18%		
2006-022	3/16/2006	0.9997	0.070 ng/L	7.81 ng/mL	97.6%	MDN3000	0.8%	MDN3000	92.55%		
	CVAFS-10			7.43 ng/mL	92.8%	MDN2585	10.1%	MDN2585	94.70%		
						MDN2320	2.5%	MDN2320	97.95%		
2006-023	3/9/2006	0.9999	$0.040~\mathrm{ng/L}$	8.03 ng/mL	100.4%	MDN0144	0.3%	MDN0144	98.55%		
	CVAFS-10			7.46 ng/mL	93.2%	MDN2627	4.0%	MDN2627	95.95%		
						MDN2764	2.6%	MDN2764	87.95%		
	- / / /			/ -							
2006-024	2/22/2006	1.0000	$0.060~\mathrm{ng/L}$	7.93 ng/mL	99.1%	MDN0117	5.0%	MDN0117	103.85%		
	CVAFS-10					MDN0953	11.9%	MDN0953	105.75%		
								MDN2718	100.10%		
2007 025	2/1/2007	0.0004	0.000 /1	7 FO . / T	04.007	MDNI2240	2.69/	MDNI2240	100.250/	MDN:0400	0.010 - /P1
2006-025	3/1/2006	0.9996	$0.090~\mathrm{ng/L}$	7.58 ng/mL	94.8%	MDN2369	2.6%	MDN2369	100.35%	MDN2182	0.019 ng/Bottle
	CVAFS-9			7.71 ng/mL	96.4%	MDN2445	0.0%	MDN2445	96.80%	MDN2483	0.017 ng/Bottle
						MDN2718	3.3%	MDN2718	100.10%		

2006-026	3/1/2006	1.0000	0.100 ng/L	7.82 ng/mL	97.7%	MDN2170	5.7%	MDN2170	101.80%	MDN0020	0.038 ng/Bottle
	CVAFS-10			7.62 ng/mL	95.2%	MDN2438	3.4%	MDN2438	88.05%		
						MDN1741	9.0%	MDN1741	102.58%		
2006-027	3/6/2006	0.9998	$0.080~\mathrm{ng/L}$	7.76 ng/mL	96.9%	MDN2738	1.0%	MDN2738	100.90%	MDN0262	0.018 ng/Bottle
	CVAFS-9			$8.08 \; \mathrm{ng/mL}$	100.9%	MDN2016	0.6%	MDN2016	101.60%		
						MDN2047	0.5%	MDN2047	102.60%		
2006-028	3/6/2006	1.0000	0.090 ng/L	7.70 ng/mL	96.2%	MDN2370	4.9%	MDN2370	97.55%	MDN0173	0.017 ng/Bottle
	CVAFS-10			7.45 ng/mL	93.1%	MDN1754	5.9%	MDN1754	99.60%		
						MDN6008	6.9%	MDN6008	89.90%		
2006-029	3/7/2006	0.9997	0.040 ng/L	7.66 ng/mL	95.7%	MDN2644	1.5%	MDN2644	99.80%		
	CVAFS-9			7.59 ng/mL	94.8%	MDN2504	0.5%	MDN2504	99.40%		
						MDN2493	1.7%	MDN2493	94.10%		
2006-030	3/22/2006	0.9998	$0.020~\mathrm{ng/L}$	7.84 ng/mL	97.9%	MDN2774	0.0%	MDN2774	96.60%	MDN2015	0.024 ng/Bottle
	CVAFS-9			7.78 ng/mL	97.3%	MDN2391	1.2%	MDN2391	89.20%		
						MDN2258	1.6%	MDN2258	104.70%		
2006-031	3/9/2006	0.9995	0.020 ng/L	7.69 ng/mL	96.1%	MDN2284	1.9%	MDN2284	101.40%		
	CVAFS-9			7.80 ng/mL	97.4%	MDN0086	2.6%	MDN0086	95.80%		
						MDN0407	1.6%	MDN0407	95.15%		
2006-032	3/16/2006	0.9997	$0.000~\mathrm{ng/L}$	7.63 ng/mL	95.3%	MDN2614	2.1%	MDN2614	91.10%		
	CVAFS-9			7.68 ng/mL	95.9%	MDN0161	2.4%	MDN0161	101.70%		
						MDN2580	2.0%	MDN2580	112.15%		
2006-033	3/17/2006	0.9999	$0.020~\mathrm{ng/L}$	7.69 ng/mL	96.1%	MDN2594	0.2%	MDN2594	100.65%	MDN2455	0.025 ng/Bottle
	CVAFS-9			7.65 ng/mL	95.6%	MDN2235	7.5%	MDN2235	96.75%		
						MDN2336	1.8%	MDN2336	91.25%		
2006-034	3/17/2006	0.9998	0.090 ng/L	7.52 ng/mL	94.0%	MDN2434	0.6%	MDN2273	99.95%	MDN2651	0.009 ng/Bottle
	CVAFS-10			7.53 ng/mL	94.1%	MDN1916	2.7%	MDN1916	100.05%		
						MDN2273	4.4%	MDN2434	89.25%		

2006-035	3/23/2006 CVAFS-9	0.9998	0.000 ng/L	7.63 ng/mL	95.3%	MDN2065 MDN1936 MDN2731	2.2% 3.6% 3.0%	MDN2065 MDN2731 MDN1936	101.75% 92.05% 99.30%		
2006-036	3/22/2006 CVAFS-10	0.9998	0.050 ng/L	7.79 ng/mL 8.01 ng/mL	97.4% 100.1%	MDN2054 MDN0783 MDN0196	1.0% 2.1% 10.0%	MDN0783 MDN0196 MDN2054	94.40% 106.05% 89.80%	MDN0288	0.016 ng/Bottle
2006-037	3/23/2006 CVAFS-10	0.9999	$0.020~\mathrm{ng/L}$	7.66 ng/mL 7.45 ng/mL	95.8% 93.1%	MDN0185 MDN2616 MDN2820	2.9% 2.0% 0.4%	MDN0185 MDN2616 MDN2820	96.20% 98.25% 97.25%	MDN1742 MDN2609	0.006 ng/Bottle 0.010 ng/Bottle
2006-038	3/28/2006 CVAFS-9	0.9998	0.010 ng/L	7.61 ng/mL 7.58 ng/mL	95.1% 94.8%	MDN2636 MDN0638 MDN2107	3.3% 1.1% 4.0%	MDN2636 MDN0638 MDN2107	102.20% 95.45% 86.25%		
2006-039	3/28/2006 CVAFS-10	0.9999	0.070 ng/L	7.71 ng/mL 7.44 ng/mL	96.3% 92.9%	MDN2340 MDN6009 MDN2575	0.9% 6.7% 6.3%	MDN2575 MDN2340 MDN6009	100.00% 85.80% 98.45%		
2006-040	3/30/2006 CVAFS-9	0.9995	0.010 ng/L	7.60 ng/mL 7.70 ng/mL	95.0% 96.3%	MDN0401 MDN2686 MDN2028	5.8% 1.9% 3.9%	MDN2686 MDN0401 MDN2028	96.05% 99.30% 100.90%		
2006-041	3/30/2006 CVAFS-10	1.0000	0.040 ng/L	7.56 ng/mL 7.04 ng/mL	94.4% 88.0%	MDN2409 MDN2531 MDN2379	0.6% 6.2% 0.4%	MDN2409 MDN2379 MDN2531	88.40% 101.07% 102.25%	MDN3010	0.010 ng/Bottle
2006-042	4/4/2006 CVAFS-9	0.9999	$0.020~\mathrm{ng/L}$	7.75 ng/mL 7.56 ng/mL	96.8% 94.5%	MDN0162 MDN2066 MDN2189	0.2% 0.7% 0.3%	MDN0162 MDN2066 MDN2189	93.55% 95.35% 100.40%		
2006-043	4/4/2006 CVAFS-10	0.9999	$0.030~\mathrm{ng/L}$	7.89 ng/mL 7.33 ng/mL	98.6% 91.6%	MDN2160 MDN0662 MDN1987	4.0% 4.1% 1.8%	MDN2160 MDN0662 MDN1987	94.80% 93.50% 85.10%	MDN2594	0.021 ng/Bottle

2006-044	4/5/2006	0.9998	0.040 ng/L	7.38 ng/mL	92.2%	MDN0408	1.6%	MDN0408	93.75%		
	CVAFS-10			7.19 ng/mL	89.9%	MDN2122	1.2%	MDN2122	83.95%		
						MDN0169	3.4%	MDN0169	90.55%		
2006-045	4/7/2006	0.9999	-0.010 ng/L	7.68 ng/mL	96.0%	MDN2760	0.3%	MDN2760	93.65%	MDN2405	0.006 ng/Bottle
	CVAFS-9			7.52 ng/mL	94.0%	MDN2503	0.5%	MDN2503	95.65%		
						MDN0936	1.8%	MDN0936	98.20%		
2006-046	4/7/2006	0.99870	-0.010 ng/L	7.64 ng/mL	95.5%	MDN2009	5.1%	MDN2009	84.75%		
	CVAFS-10			7.18 ng/mL	89.8%	MDN1930	1.3%	MDN1930	94.55%		
						MDN2790	1.4%	MDN2790	88.00%		
2006-047	4/12/2006	0.99940	$0.050~\mathrm{ng/L}$	7.63 ng/mL	95.3%	MDN2511	1.3%	MDN2511	95.35%	MDN2271	0.015 ng/Bottle
	CVAFS-9			7.72 ng/mL	96.4%	MDN0655	2.2%	MDN0655	98.70%		
						MDN2797	1.4%	MDN2797	95.00%		
2006-048	4/12/2006	0.99900	$0.050~\mathrm{ng/L}$	7.68 ng/mL	96.0%	MDN2324	7.0%	MDN2324	105.35%	MDN0779	0.017 ng/Bottle
	CVAFS-10			7.62 ng/mL	95.2%	MDN1734	1.5%	MDN1734	89.95%		
						MDN2776	11.3%	MDN2776	100.45%		
2006-049	4/14/2006	0.99970	$0.030 \; \mathrm{ng/L}$	7.66 ng/mL	95.7%	MDN2476	0.9%	MDN2476	94.00%	MDN2686	0.015 ng/Bottle
	CVAFS-9			7.68 ng/mL	96.0%	MDN0894	4.1%	MDN0894	97.70%		
						MDN2458	1.8%	MDN2458	100.41%		
2006-050	4/14/2006	0.99980	$0.020~\mathrm{ng/L}$	7.82 ng/mL	97.8%	MDN1924	0.1%	MDN1924	85.50%		
	CVAFS-10			7.04 ng/mL	87.9%	MDN2148	9.1%	MDN2148	83.25%		
						MDN2049	5.4%	MDN2049	94.65%		
2006-051	4/18/2006	0.99970	$0.010 \; \mathrm{ng/L}$	7.55 ng/mL	94.3%	MDN0490	1.7%	MDN0490	83.65%		
	CVAFS-10			7.05 ng/mL	88.1%	MDN1976	3.6%	MDN1976	80.25%		
						MDN2772	3.7%	MDN2772	89.25%		
2006-052	4/19/2006	0.99980	$0.040~\mathrm{ng/L}$	7.42 ng/mL	92.8%	MDN2370	5.0%	MDN2370	97.40%	MDN0693	0.015 ng/Bottle
	CVAFS-9			6.82 ng/mL	85.2%	MDN2449	1.0%	MDN2449	83.90%		
						MDN3001	3.3%	MDN3001	87.30%		

2006-053	4/19/2006	1.00000	$0.030~\mathrm{ng/L}$	7.61 ng/mL	95.1%	MDN2456	5.1%	MDN2456	98.35%	MDN0936	0.028 ng/Bottle
	CVAFS-10			7.11 ng/mL	88.9%	MDN2793	7.3%	MDN2793	92.40%		
						MDN3013	17.0%	MDN3013	98.80%		
2006-054	4/25/2006	0.99980	$0.050 \; \mathrm{ng/L}$	7.52 ng/mL	93.9%	MDN0430	1.0%	MDN0430	85.40%		
	CVAFS-10			7.31 ng/mL	91.4%	MDN0827	4.8%	MDN0827	100.70%		
						MDN2400	0.6%	MDN2400	80.60%		
2006-055	5/2/2006	0.99950	0.030 ng/L	7.63 ng/mL	95.4%	MDN2480	1.2%	MDN2480	85.90%		
	CVAFS-10			7.49 ng/mL	93.6%	MDN2712	1.9%	MDN2712	90.90%		
						MDN2775	13.4%	MDN2775	102.85%		
2006-056	5/2/2006	1.00000	$0.030~\mathrm{ng/L}$	7.38 ng/mL	92.3%	MDN0173	0.5%	MDN0173	93.80%	MDN0747	0.010 ng/Bottle
	CVAFS-9			7.03 ng/mL	87.9%	MDN2176	0.2%	MDN2176	88.75%		
						MDN2735	3.3%	MDN2735	99.85%		
2006-057	5/3/2006	1.00000	$0.000~\mathrm{ng/L}$	7.51 ng/mL	93.9%	MDN0811	1.2%	MDN0811	94.50%		
	CVAFS-9			7.46 ng/mL	93.3%	MDN0915	0.3%	MDN0915	98.45%		
						MDN2708	2.0%	MDN2708	101.05%		
2006-058	5/3/2006	0.99900	$0.030~\mathrm{ng/L}$	7.46 ng/mL	93.3%	MDN0925	15.3%	MDN0925	109.50%		
	CVAFS-10			7.47 ng/mL	93.4%	MDN1955	1.0%	MDN1955	86.00%		
						MDN2447	12.5%	MDN2447	109.20%		
2006-059	5/4/2006	1.00000	$0.030~\mathrm{ng/L}$	7.50 ng/mL	93.7%	MDN2020	1.1%	MDN2020	97.35%		
	CVAFS-9			7.15 ng/mL	89.3%	MDN2303	3.0%	MDN2303	91.40%		
						MDN2652	0.2%	MDN2652	93.45%		
2006-060	5/9/2006	1.00000	$0.000~\mathrm{ng/L}$	7.60 ng/mL	94.9%	MDN1918	1.4%	MDN1918	104.40%	MDN1734	0.007 ng/Bottle
	CVAFS-9			7.23 ng/mL	90.4%	MDN2183	0.6%	MDN2183	93.30%		
						MDN2733	4.2%	MDN2733	96.80%		
	- 4 4										
2006-061	5/10/2006	1.00000	$0.050~\mathrm{ng/L}$	7.55 ng/mL	94.3%	MDN2360	19.1%	MDN2360	82.60%	MDN2052	0.048 ng/Bottle
	CVAFS-9			7.39 ng/mL	92.4%	MDN2585	6.8%	MDN2585	100.20%		

2006-062	5/10/2006 CVAFS-10	1.00000	$0.070~\mathrm{ng/L}$	5.98 ng/mL	74.8%	MDN2671	6.0%	MDN2671	97.60%		
2006-063	5/11/2006	0.99930	0.040 ng/L	7.25 ng/mL	90.6%	MDN0654	9.7%	MDN0654	95.25%		
	CVAFS-10		Ç,	6.70 ng/mL	83.7%	MDN2029	0.4%	MDN2029	77.55%		
2006-064	5/12/2006	1.00000	0.020 ng/L	7.14 ng/mL	89.2%	MDN1936	3.6%	MDN1936	99.30%		
2000-004	CVAFS-9	1.00000	0.020 fig/ L	7.45 ng/mL	93.1%	MDN1999	1.1%	MDN1999	90.00%		
	CV111 0-7			7.43 lig/ lili2	23.170	MDN2005	9.1%	MDN2005	97.60%		
						1,1131 (2000	J.17,0	1,1131,12000	27.0070		
2006-065	5/15/2006	0.99950	$0.040~\mathrm{ng/L}$	7.38 ng/mL	92.3%	MDN0866	4.4%	MDN0866	97.95%		
	CVAFS-10			6.65 ng/mL	83.1%	MDN2523	0.2%	MDN2523	84.75%		
2006-066	5/18/2006	1.00000	0.010 ng/L	7.66 ng/mL	95.7%	MDN0479	0.7%	MDN0479	93.30%	MDN2480	0.017 ng/Bottle
	CVAFS-9			7.18 ng/mL	89.8%	MDN2044	2.8%	MDN2044	91.85%		,
				<i>y</i> .		MDN2349	0.0%	MDN2349	93.40%		
2004.04=	5 /04 /0004	4.00000	0.070		00.407	1.501.040.c	2.007) (F) (O) (O)	07.400/		
2006-067	5/31/2006	1.00000	0.060 ng/L	7.13 ng/mL	89.1%	MDN0126	3.8%	MDN0126	87.60%		
	CVAFS-9			7.60 ng/mL	94.9%	MDN0979 MDN2069	3.1% 0.4%	MDN0979 MDN2069	87.75% 95.20%		
						MID1\2009	0.470	MD1\2009	93.2070		
2006-068	5/31/2006	0.99900	-0.010 ng/L	7.51 ng/mL	93.8%	MDN0277	3.5%	MDN0277	99.65%	MDN2170	0.015 ng/Bottle
	CVAFS-10			7.42 ng/mL	92.7%	MDN2379	2.7%	MDN2379	91.35%		
						MDN2529	3.4%	MDN2529	107.05%		
2006-069	5/15/2006	1.00000	0.070 ng/L	7.57 ng/mL	94.6%	MDN0832	2.2%	MDN0832	89.45%		
2000 000	CVAFS-9	1.00000	0.070 1.8/ 12	7.17 ng/mL	89.6%	MDN2028	0.3%	MDN2028	92.40%		
				<i>y</i>		MDN2756	1.0%	MDN2756	93.35%		
2006-071	5/27/2006	1.00000	$0.040~\mathrm{ng/L}$	7.67 ng/mL	95.8%	MDN1956	3.7%	MDN1956	88.20%		
	CVAFS-9			7.34 ng/mL	91.8%	MDN2601	0.6%	MDN2601	88.35%		
						MDN2803	4.6%	MDN2803	91.50%		
2006-072	5/27/2006	0.99860	$0.070~\mathrm{ng/L}$	7.62 ng/mL	95.3%	MDN2707	17.8%	MDN2707	94.95%	MDN2502	0.022 ng/Bottle

	CVAFS-10			7.23 ng/mL	90.4%						
2006-073	6/1/2006	0.99880	0.010 ng/L	7.48 ng/mL	93.4%	MDN1959	12.1%	MDN1959	97.95%		
	CVAFS-10			6.51 ng/mL	81.3%	MDN2064	6.3%	MDN2064	92.20%		
						MDN2342	6.9%	MDN2342	96.70%		
2006-074	6/2/2006	1.00000	0.030 ng/L	7.06 ng/mL	88.3%	MDN1755	1.5%	MDN1755	93.70%		
	CVAFS-9		8,	7.66 ng/mL	95.7%	MDN2195	4.0%	MDN2195	93.10%		
				3,		MDN2522	0.6%	MDN2522	85.95%		
2006-075	6/2/2006	0.99870	0.000 ng/L	7.45 ng/mL	93.1%	MDN0437	3.5%	MDN0437	97.25%		
	CVAFS-10		Q.	7.47 ng/mL	93.3%	MDN2519	7.6%	MDN2519	94.30%		
				<u> </u>		MDN2565	2.2%	MDN2565	92.25%		
2006-076	6/15/2006	1.00000	0.030 ng/L	6.71 ng/mL	83.8%	MDN0421	0.7%	MDN0421	88.25%	MDN0279	0.012 ng/Bottle
	CVAFS-9			7.56 ng/mL	94.4%	MDN0642	0.6%	MDN0642	89.15%		
						MDN0770	3.5%	MDN0770	87.65%		
2006-077	6/5/2006	0.99880	0.000 ng/L	7.52 ng/mL	94.0%	MDN0774	1.6%	MDN0774	90.25%	MDN2207	0.021 ng/Bottle
	CVAFS-10			7.08 ng/mL	88.5%	MDN2282	5.3%	MDN2282	91.10%		
						MDN2819	6.9%	MDN2819	96.20%		
2006-078	6/6/2006	1.00000	0.030 ng/L	7.50 ng/mL	93.7%	MDN2025	5.5%	MDN2025	81.70%		
	CVAFS-9			6.50 ng/mL	81.3%	MDN2055	0.8%	MDN2055	82.85%		
						MDN2316	0.5%	MDN2316	92.60%		
2006-079	6/6/2006	0.99890	0.030 ng/L	7.67 ng/mL	95.8%	MDN0483	10.3%	MDN0483	93.60%		
	CVAFS-10			7.24 ng/mL	90.4%	MDN2091	6.9%	MDN2091	94.65%		
						MDN2681	0.2%	MDN2681	90.35%		
2006-080	6/7/2006	0.99900	0.080 ng/L	7.86 ng/mL	98.2%	MDN1997	7.0%	MDN1997	100.65%		
	CVAFS-10			7.27 ng/mL	90.8%	MDN2234	13.0%	MDN2234	91.45%		
						MDN2637	1.2%	MDN2637	92.55%		
2006-081	6/7/2006	0.99990	$0.060~\mathrm{ng/L}$	7.61 ng/mL	95.1%	MDN2010	2.4%	MDN2010	90.40%		

	CVAFS-9			6.99 ng/mL	87.3%	MDN2638	1.6%	MDN2638	90.75%		
						MDN2804	4.3%	MDN2804	84.35%		
2006-082	6/12/2006	1.00000	$0.060~\mathrm{ng/L}$	7.66 ng/mL	95.7%	MDN0894	1.1%	MDN0894	94.30%	MDN2017	0.015 ng/Bottle
	CVAFS-9			7.20 ng/mL	89.9%	MDN2339	0.3%	MDN2339	93.05%		
						MDN2767	1.6%	MDN2767	95.15%		
2007 002	c /12 /200c	1.0000	0.070 /I	7.57 /1	04.60/	MDN10445	20.20/	MDN10445	77.750/		
2006-083	6/12/2006	1.0000	$0.070~\mathrm{ng/L}$	7.57 ng/mL	94.6%	MDN0445	20.3%	MDN0445	77.75%		
	CVAFS-10			7.04 ng/mL	87.9%	MDN2576	4.4%	MDN2576	90.05%		
						MDN2657	5.2%	MDN2657	99.00%		
2006-084	6/13/2006	0.9996	0.060 ng/L	7.72 ng/mL	96.4%	MDN0688	1.4%	MDN0688	94.20%		
	CVAFS-9			7.10 ng/mL	88.7%	MDN0912	1.7%	MDN0912	87.55%		
						MDN2145	6.8%	MDN2145	89.15%		
2006-085	6/21/2006	1.0000	$0.070~\mathrm{ng/L}$	$8.05~\mathrm{ng/mL}$	100.6%	MDN0668	1.1%	MDN0668	105.55%		
	CVAFS-9			7.45 ng/mL	93.1%	MDN0183	5.2%	MDN0183	91.65%		
						MDN2084	0.2%	MDN2084	94.25%		
2006-086	6/13/2006	1.0000	$0.020~\mathrm{ng/L}$	7.71 ng/mL	96.3%	MDN2714	5.2%	MDN2714	92.55%		
	CVAFS-10			6.95 ng/mL	86.8%	MDN2263	3.5%	MDN2263	94.35%		
						MDN1924	0.1%	MDN1924	85.50%		
2006-087	6/21/2006	0.99900	0.050 ng/L	6.91 ng/mL	86.4%	MDN0086	7.0%	MDN0086	102.65%		
2000-007	CVAFS-10	0.99900	0.030 fig/ L	0.91 lig/ lill.	00.470	MDN0000	7.070	MDN0000	102.0370		
	CV111 5-10										
2006-088	6/28/2006	0.99920	0.030 ng/L	7.40 ng/mL	92.5%	MDN2349	2.4%	MDN2349	91.30%		
	CVAFS-10		O,	g,							
2006-089	6/28/2006	1.00000	$0.030~\mathrm{ng/L}$	7.58 ng/mL	94.8%	MDN1927	0.4%	MDN1927	94.45%		
	CVAFS-9			6.76 ng/mL	84.4%	MDN2414	1.1%	MDN2414	89.15%		
2006-090	6/23/2006	1.00000	$0.040~\mathrm{ng/L}$	7.30 ng/mL	91.2%	MDN2278	2.8%	MDN2278	87.00%	MDN2246	0.023 ng/Bottle
	CVAFS-9			6.41 ng/mL	80.1%	MDN2484	1.0%	MDN2484	89.50%		
						MDN2656	1.9%	MDN2656	85.85%		

2006-091	6/27/2006 CVAFS-9	1.00000	0.080 ng/L	7.35 ng/mL 7.35 ng/mL	91.8% 91.8%	MDN0287 MDN1968 MDN2568	0.4% 3.1% 2.1%	MDN0287 MDN1968 MDN2568	89.55% 109.10% 94.55%	MDN1911	0.016 ng/Bottle
2006-092	6/29/2006 CVAFS-10	0.99960	$0.030~\mathrm{ng/L}$	7.60 ng/mL	94.9%	MDN2092	2.3%	MDN2092	97.35%		
2006-093	6/29/2006 CVAFS-9	1.00000	0.040 ng/L	7.51 ng/mL 6.86 ng/mL	93.8% 85.8%	MDN0757 MDN2112 MDN2778	3.5% 1.1% 2.1%	MDN0757 MDN2112 MDN2778	90.80% 93.05% 91.15%	MDN2819	0.021 ng/Bottle
2006-094	7/3/2006 CVAFS-9	0.99990	$0.040~\mathrm{ng/L}$	7.79 ng/mL 7.23 ng/mL	97.3% 90.3%	MDN2243 MDN2511 MDN2771	1.5% 1.0% 0.6%	MDN2243 MDN2511 MDN2771	91.50% 96.10% 93.25%		
2006-095	7/3/2006 CVAFS-10	0.99920	0.030 ng/L	7.70 ng/mL 7.18 ng/mL	96.3% 89.7%	MDN0769 MDN0813 MDN2571	2.3% 7.5% 0.4%	MDN0769 MDN0813 MDN2571	102.05% 92.30% 96.50%	MDN2118	0.019 ng/Bottle
2006-096	7/7/2006 CVAFS-9	1.00000	0.060 ng/L	7.71 ng/mL 7.58 ng/mL	96.4% 94.7%	MDN0719 MDN0949 MDN2299	1.6% 0.0% 5.6%	MDN0719 MDN0949 MDN2299	91.85% 99.80% 99.40%		
2006-097	7/13/2006 CVAFS-9	1.00000	$0.030~\mathrm{ng/L}$	7.60 ng/mL 7.36 ng/mL	95.0% 91.9%	MDN2071 MDN2175 MDN2474	2.0% 3.1% 1.0%	MDN2071 MDN2175 MDN2474	96.00% 92.95% 96.30%	MDN0266 MDN2648	0.012 ng/Bottle 0.016 ng/Bottle
2006-098	7/20/2006 CVAFS-10	0.99970	0.060 ng/L	7.40 ng/mL	92.5%	MDN1939 MDN2673	4.7% 11.0%	MDN1939 MDN2673	86.80% 87.90%		
2006-099	7/17/2006 CVAFS-10	0.99990	0.040 ng/L	7.94 ng/mL 7.07 ng/mL	99.3% 88.3%	MDN0983 MDN2541 MDN2698	7.1% 9.8% 10.7%	MDN0983 MDN2541 MDN2698	91.15% 89.00% 105.55%	MDN2527	-0.004 ng/Bottle

2006-100	7/21/2006	0.99990	$0.040~\mathrm{ng/L}$	7.54 ng/mL	94.2%	MDN0866	2.4%	MDN0866	98.20%	MDN1940	0.046 ng/Bottle
	CVAFS-10			7.13 ng/mL	89.1%	MDN0927	8.5%	MDN0927	87.35%	MDN2204	0.016 ng/Bottle
						MDN2726	1.5%	MDN2726	92.05%		
2006-101	7/18/2006	0.99980	0.040 ng/L	7.86 ng/mL	98.3%	MDN2078	0.5%	MDN2078	96.30%		
	CVAFS-9			7.39 ng/mL	92.4%	MDN2186	2.2%	MDN2186	93.90%		
						MDN2377	2.4%	MDN2377	85.65%		
2006-102	7/19/2006	0.99990	0.040 ng/L	8.06 ng/mL	100.7%	MDN0225	14.7%	MDN0225	94.35%		
	CVAFS-9			7.86 ng/mL	98.3%	MDN2161	0.5%	MDN2161	103.93%		
						MDN2705	2.5%	MDN2705	103.75%		
2006-103	7/21/2006	0.99980	$0.080~\mathrm{ng/L}$	7.85 ng/mL	98.1%	MDN2058	3.0%	MDN2058	93.55%	MDN0936	0.017 ng/Bottle
	CVAFS-9			$7.02~\mathrm{ng/mL}$	87.8%	MDN2476	1.9%	MDN2476	88.35%	MDN0943	0.021 ng/Bottle
						MDN2555	1.7%	MDN2555	90.65%		
2006-104	7/24/2006	0.99950	$0.070~\mathrm{ng/L}$	8.33 ng/mL	104.1%	MDN0185	0.0%	MDN0185	94.80%		
	CVAFS-9			7.32 ng/mL	91.4%	MDN2099	1.3%	MDN2099	95.75%		
						MDN2183	0.0%	MDN2183	93.80%		
2006-105	7/26/2006	0.99990	$0.100 \; \mathrm{ng/L}$	7.92 ng/mL	99.0%	MDN0437	3.2%	MDN0437	96.05%		
	CVAFS-9			7.39 ng/mL	92.3%	MDN2303	8.6%	MDN2303	95.05%		
						MDN2405	0.2%	MDN2405	95.70%		
2006-106	7/24/2006	0.99970	$0.030~\mathrm{ng/L}$	7.46 ng/mL	93.3%	MDN0778	1.6%	MDN0778	99.65%	MDN0772	0.018 ng/Bottle
	CVAFS-10			7.78 ng/mL	97.3%	MDN2166	0.8%	MDN2166	97.55%		
						MDN3002	6.7%	MDN3002	104.30%		
2006-107	7/20/2006	0.99960	$0.070~\mathrm{ng/L}$	7.69 ng/mL	96.1%	MDN2613	0.8%	MDN2613	95.80%		
	CVAFS-9					MDN2616	1.4%	MDN2616	95.85%		
2006-108	7/26/2006	1.00000	$0.060~\mathrm{ng/L}$	7.71 ng/mL	96.3%	MDN0661	1.8%	MDN0661	98.05%		
	CVAFS-10			7.51 ng/mL	93.8%	MDN2055	0.0%	MDN2055	101.00%		
						MDN2585	3.8%	MDN2585	99.65%		

2006-109	7/28/2006	0.99990	0.060 ng/L	7.85 ng/mL	98.1%	MDN0190	1.5%	MDN0190	93.10%		
2000 107	CVAFS-9	0.55550	0.000 11g/ 22	7.45 ng/mL	93.1%	MDN0846	0.7%	MDN0846	95.80%		
	0,1110,				, , , , ,	MDN2061	1.3%	MDN2061	98.40%		
						1.1231 (2001	1.570	1,1131 (2001	70.1070		
2006-110	7/28/2006	1.00000	0.050 ng/L	7.66 ng/mL	95.8%	MDN0118	2.1%	MDN0118	96.25%		
	CVAFS-10			7.25 ng/mL	90.6%	MDN2411	4.9%	MDN2411	98.60%		
						MDN2547	1.0%	MDN2547	96.95%		
2006-111	7/31/2006	1.00000	0.030 ng/L	7.60 ng/mL	95.0%	MDN2482	2.0%	MDN2482	88.45%	MDN1954	0.017 ng/Bottle
	CVAFS-10			6.77 ng/mL	84.6%	MDN2731	1.4%	MDN2731	89.85%		
						MDN3014	3.7%	MDN3014	101.25%		
2006-112	7/31/2006	0.99980	$0.050~\mathrm{ng/L}$	7.76 ng/mL	96.9%	MDN0483	0.7%	MDN0483	90.15%	MDN0678	0.027 ng/Bottle
	CVAFS-9			7.23 ng/mL	90.3%	MDN1969	0.3%	MDN1969	95.80%		
						MDN2080	2.7%	MDN2080	93.70%		
2006-113	8/1/2006	0.99990	$0.030~\mathrm{ng/L}$	7.36 ng/mL	92.0%	MDN2030	9.6%	MDN2030	104.45%	MDN2590	0.020 ng/Bottle
	CVAFS-10			7.66 ng/mL	95.8%	MDN2182	0.9%	MDN2182	95.85%		
						MDN2672	0.1%	MDN2672	94.90%		
2006-114	8/1/2006	0.99990	$0.050 \; \mathrm{ng/L}$	7.94 ng/mL	99.3%	MDN1971	1.1%	MDN1971	96.80%		
	CVAFS-9			7.39 ng/mL	92.4%	MDN2114	0.5%	MDN2114	95.30%		
						MDN2768	1.6%	MDN2768	97.65%		
2006-115	8/16/2006	0.99990	$0.050~\mathrm{ng/L}$	7.79 ng/mL	97.3%	MDN0648	0.3%	MDN0648	94.15%		
	CVAFS-9			7.38 ng/mL	92.3%	MDN2361	0.6%	MDN2361	97.90%		
						MDN3021	1.0%	MDN3021	95.25%		
2006 116	0 /15 /2007	0.00040	0.020 /I	774 / 1	07.00/	MDN14042	0.10/	MDN14042	00.000/		
2006-116	8/15/2006	0.99940	$0.030~\mathrm{ng/L}$	7.76 ng/mL	96.9%	MDN1913	9.1%	MDN1913	89.80%		
	CVAFS-10			7.45 ng/mL	93.1%	MDN1970	5.9%	MDN1970	105.70%		
						MDN2577	7.4%	MDN2577	101.45%		
2006-117	8/9/2006	0.99980	0.000 ng/L	6.92 ng/mL	86.4%	MDN1992	2.0%	MDN1992	92.75%		
2000-11/	CVAFS-10	0.77700	0.000 ng/ L	7.21 ng/mL	90.1%	MDN1592 MDN2572	5.7%	MDN2572	114.40%		
	C v 211 5-10			7.21 Hg/IIIL	70.170	MDN2772 MDN2733	4.0%	MDN2772 MDN2733	97.10%		
						1111/11/2/33	7.070	1711/17/2/33	27.1070		

2006-118	8/8/2006	0.99970	$0.000~\mathrm{ng/L}$	6.84 ng/mL	85.4%	MDN0636	10.8%	MDN0636	98.90%	MDN2681	0.034 ng/Bottle
	CVAFS-10			7.46 ng/mL	93.2%	MDN2628	0.9%	MDN2628	91.25%		
						MDN2813	2.9%	MDN2813	105.05%		
2006-119	8/17/2006	0.99870	-0.080 ng/L	7.78 ng/mL	97.3%	MDN2028	23.8%	MDN2028	100.15%		
	CVAFS-10					MDN2119	1.4%	MDN2119	108.25%		
						MDN2233	5.1%	MDN2233	105.40%		
2006-120	8/22/2006	0.99980	$0.060~\mathrm{ng/L}$	7.85 ng/mL	98.1%	MDN0794	2.3%	MDN0794	97.60%		
	CVAFS-9			7.43 ng/mL	92.9%	MDN2409	0.4%	MDN2409	91.75%		
						MDN2412	3.4%	MDN2412	92.70%		
2006-121	8/22/2006	0.99990	$0.020~\mathrm{ng/L}$	$8.00~\mathrm{ng/mL}$	100.0%	MDN1921	5.4%	MDN1921	105.00%	MDN2566	0.031 ng/Bottle
	CVAFS-10			7.89 ng/mL	98.6%	MDN1981	0.6%	MDN1981	110.45%		
						MDN2152	0.6%	MDN2152	98.30%		
2006-122	8/16/2006	0.99930	-0.020 ng/L	7.83 ng/mL	97.9%	MDN0783	5.6%	MDN0783	112.05%		
	CVAFS-10			7.99 ng/mL	99.8%	MDN2509	3.1%	MDN2509	106.00%		
						MDN2691	6.8%	MDN2691	102.65%		
2006-123	8/24/2006	1.00000	$0.050~\mathrm{ng/L}$	7.82 ng/mL	97.7%	MDN0277	1.4%	MDN0277	94.95%	MDN0848	0.006 ng/Bottle
	CVAFS-9			7.27 ng/mL	90.9%	MDN2573	0.2%	MDN2573	93.20%		
						MDN2729	2.4%	MDN2729	95.45%		
2006-124	8/24/2006	0.99990	$0.020~\mathrm{ng/L}$	8.04 ng/mL	100.5%	MDN0442	1.0%	MDN0442	100.90%	MDN2590	0.020 ng/Bottle
	CVAFS-10			7.96 ng/mL	99.4%	MDN0893	0.9%	MDN0893	108.90%	MDN2476	0.026 ng/Bottle
						MDN1908	0.5%	MDN1908	99.25%		
2006-125	8/29/2006	0.99990	$0.120~\mathrm{ng/L}$	7.91 ng/mL	98.8%	MDN0447	3.1%	MDN0447	98.40%		
	CVAFS-10			7.74 ng/mL	96.7%	MDN0731	3.1%	MDN0731	101.35%		
						MDN2157	0.7%	MDN2157	100.85%		
2006-126	8/26/2006	0.99710	$0.070~\mathrm{ng/L}$	$7.98 \; \mathrm{ng/mL}$	99.8%	MDN0260	0.4%	MDN0260	106.95%		
	CVAFS-10			$7.80~\mathrm{ng/mL}$	97.5%	MDN2255	4.3%	MDN2255	105.00%		
						MDN2656	4.3%	MDN2656	99.40%		

2006-127	8/26/2006	1.00000	0.070 ng/L	7.80 ng/mL	97.4%	MDN0973	5.2%	MDN0973	93.70%		
2000 127	CVAFS-9	1.00000	0.070 Hg/ E	7.41 ng/mL	92.6%	MDN2345	0.8%	MDN2345	87.55%		
	GVIIIO			/. / I lig/ lill3	72.070	MDN2423	3.5%	MDN2423	94.70%		
						1110112125	3.570	1115112125	J 1.7070		
2006-128	8/31/2006	0.99990	$0.000~\mathrm{ng/L}$	8.13 ng/mL	101.6%	MDN0968	0.3%	MDN0968	107.35%	MDN2308	0.059 ng/Bottle
	CVAFS-10			8.03 ng/mL	100.4%	MDN2052	9.2%	MDN2052	96.95%		Ü
				Ç.		MDN2806	0.7%	MDN2806	102.05%		
2006-129	9/5/2006	0.99980	$0.100~\mathrm{ng/L}$	7.98 ng/mL	99.8%	MDN0774	2.6%	MDN0774	97.30%	MDN2358	0.038 ng/Bottle
	CVAFS-9			7.58 ng/mL	94.8%	MDN1973	0.2%	MDN1973	94.25%		
						MDN2751	0.0%	MDN2751	95.90%		
2006-130	9/5/2006	1.00000	$0.060~\mathrm{ng/L}$	$8.08~\mathrm{ng/mL}$	100.9%	MDN0862	4.1%	MDN0862	98.30%	MDN2217	0.024 ng/Bottle
	CVAFS-10			7.87 ng/mL	98.3%	MDN0916	8.7%	MDN0916	94.25%		
						MDN2017	1.0%	MDN2017	100.60%		
2006-131	9/7/2006	0.99950	$0.050~\mathrm{ng/L}$	8.26 ng/mL	103.2%	MDN2168	5.8%	MDN2168	87.25%		
	CVAFS-9			$7.70~\mathrm{ng/mL}$	96.2%	MDN2185	2.9%	MDN2185	95.35%		
						MDN2693	0.2%	MDN2693	99.55%		
2006-132	9/7/2006	0.99920	$0.010 \; \mathrm{ng/L}$	$8.02~\mathrm{ng/mL}$	100.2%	MDN0936	2.9%	MDN0936	97.15%	MDN2112	0.017 ng/Bottle
	CVAFS-10			7.72 ng/mL	96.4%	MDN2490	4.5%	MDN2490	100.80%		
						MDN2575	6.3%	MDN2575	100.00%		
2006-133	9/13/2006	0.99940	$0.040~\mathrm{ng/L}$	8.00 ng/mL	99.9%	MDN0137	3.0%	MDN0137	95.25%		
	CVAFS-9			7.74 ng/mL	96.7%	MDN0162	0.5%	MDN0162	99.45%		
						MDN2793	0.2%	MDN2793	93.65%		
2006-134	9/13/2006	0.99990	$0.050~\mathrm{ng/L}$	7.93 ng/mL	99.1%	MDN0765	0.4%	MDN0765	100.50%	MDN2739	0.016 ng/Bottle
	CVAFS-10			7.86 ng/mL	98.2%	MDN2047	3.7%	MDN2047	100.65%		
						MDN2074	7.9%	MDN2074	103.00%		
2006 127	0/44/2007	0.00020	0.000 /*	0.22	402 707	3.003.40.44	2.607	MDNIGH	00.000/		
2006-135	9/14/2006	0.99930	$0.000~\mathrm{ng/L}$	8.22 ng/mL	102.7%	MDN1941	2.6%	MDN1941	92.30%		
	CVAFS-9			7.71 ng/mL	96.3%	MDN2159	1.5%	MDN2159	96.75%		
						MDN2673	3.3%	MDN2673	97.70%		

2006-136	9/14/2006	0.99990	$0.060~\mathrm{ng/L}$	7.95 ng/mL	99.3%	MDN2023	1.0%	MDN2023	98.00%		
	CVAFS-10			7.69 ng/mL	96.1%	MDN2473	4.3%	MDN2473	99.00%		
						MDN2623	1.8%	MDN2623	97.95%		
2006-137	9/18/2006	0.99980	0.110 ng/L	8.10 ng/mL	101.2%	MDN0861	0.2%	MDN0861	94.40%	MDN0654	0.019 ng/Bottle
	CVAFS-9			7.44 ng/mL	93.0%	MDN2113	6.5%	MDN2113	91.95%	MDN2465	0.033 ng/Bottle
						MDN2763	2.2%	MDN2763	89.85%		
2006-138	9/18/2006	0.99990	0.120 ng/L	8.04 ng/mL	100.5%	MDN2096	1.9%	MDN2096	101.80%		
	CVAFS-10			7.94 ng/mL	99.3%	MDN2411	4.9%	MDN2411	98.60%		
						MDN2579	4.1%	MDN2579	99.80%		
2006-139	9/25/2006	1.00000	0.150 ng/L	7.96 ng/mL	99.5%	MDN2372	3.0%	MDN2372	84.60%	MDN2429	0.021 ng/Bottle
	CVAFS-9			7.22 ng/mL	90.3%	MDN2487	1.7%	MDN2487	91.70%		
						MDN2800	0.8%	MDN2800	93.75%		
2006-140	9/19/2006	1.00000	0.140 ng/L	7.90 ng/mL	98.8%	MDN0190	0.1%	MDN0190	94.95%		
	CVAFS-9			7.76 ng/mL	97.0%	MDN2083	0.0%	MDN2083	95.10%		
						MDN2502	1.6%	MDN2502	100.55%		
2006-141	9/25/2006	0.99990	0.160 ng/L	7.79 ng/mL	97.4%	MDN0953	2.4%	MDN0953	109.90%	MDN0951	0.011 ng/Bottle
	CVAFS-10			7.84 ng/mL	97.9%	MDN2022	1.6%	MDN2022	99.15%		
						MDN2535	8.0%	MDN2535	103.15%		
2006-142	9/22/2006	0.99980	$0.100 \; \mathrm{ng/L}$	7.85 ng/mL	98.1%	MDN0656	1.0%	MDN0656	99.05%		
	CVAFS-10			7.79 ng/mL	97.3%	MDN0853	5.1%	MDN0853	97.85%		
						MDN2303	3.4%	MDN2303	97.00%		
2006-143	9/26/2006	0.00000	0.100 ng/L	7.78 ng/mL	97.2%	MDN0493	2.8%	MDN0493	102.75%		
	CVAFS-10			7.82 ng/mL	97.8%	MDN0934	5.8%	MDN0934	101.55%		
						MDN2514	1.2%	MDN2514	88.25%		
2006-144	9/28/2006	0.99990	0.140 ng/L	7.97 ng/mL	99.6%	MDN0969	2.0%	MDN0969	99.25%		
	CVAFS-9			7.58 ng/mL	94.8%	MDN2073	1.1%	MDN2073	97.75%		
						MDN2413	5.3%	MDN2413	89.65%		

2006-145	9/28/2006	0.99990	0.130 ng/L	7.92 ng/mL	98.9%	MDN0421	1.4%	MDN0421	97.90%	MDN2472	0.024 ng/Bottle
	CVAFS-10		Q.	7.83 ng/mL	97.9%	MDN1759	2.4%	MDN1759	103.80%	MDN2650	0.019 ng/Bottle
				O,		MDN2463	0.6%	MDN2463	85.70%		ζ,
2006-146	10/2/2006	1.00000	0.230 ng/L	8.28 ng/mL	103.4%	MDN2154	1.2%	MDN2154	95.45%		
	CVAFS-9			7.67 ng/mL	95.8%	MDN2294	4.1%	MDN2294	95.50%		
						MDN2496	1.9%	MDN2496	96.65%		
2006-147	10/2/2006	0.00000	$0.120~\mathrm{ng/L}$	$8.00~\mathrm{ng/mL}$	99.9%	MDN0689	2.3%	MDN0689	102.95%		
	CVAFS-10			8.02 ng/mL	100.2%	MDN2364	8.9%	MDN2364	98.85%		
						MDN2747	0.9%	MDN2747	101.00%		
2006-148	10/4/2006	0.99990	0.140 ng/L	7.98 ng/mL	99.7%	MDN0155	4.8%	MDN0155	80.45%		
	CVAFS-9			7.53 ng/mL	94.1%	MDN1761	2.8%	MDN1761	96.70%		
						MDN2821	3.2%	MDN2821	94.10%		
2006-149	10/4/2006	0.99940	0.140 ng/L	7.87 ng/mL	98.4%	MDN0805	0.5%	MDN0805	100.15%		
	CVAFS-10			7.87 ng/mL	98.3%	MDN0933	6.3%	MDN0933	96.25%		
						MDN2512	2.7%	MDN2512	104.15%		
2006-150	10/5/2006	0.99960	0.110 ng/L	8.17 ng/mL	102.1%	MDN0173	0.5%	MDN0173	93.80%		
	CVAFS-9			7.55 ng/mL	94.3%	MDN1954	1.5%	MDN1954	95.05%		
						MDN2488	4.6%	MDN2488	98.75%		
2006-151	10/10/200	0.99990	0.130 ng/L	8.24 ng/mL	102.9%	MDN0867	0.6%	MDN0867	91.40%		
	CVAFS-9			7.68 ng/mL	95.9%	MDN2606	3.2%	MDN2606	92.55%		
						MDN3017	1.8%	MDN3017	98.60%		
2006-152	10/10/200	0.99980	$0.100 \; \mathrm{ng/L}$	7.93 ng/mL	99.1%	MDN2319	16.9%	MDN2319	97.05%		
	CVAFS-10			7.99 ng/mL	99.8%	MDN2812	0.5%	MDN2812	106.95%		
						MDN2817	4.0%	MDN2817	94.45%		
2006-153	10/5/2006	0.99980	$0.080~\mathrm{ng/L}$	7.61 ng/mL	95.1%	MDN0956	13.1%	MDN0956	94.50%	MDN2055	0.014 ng/Bottle
	CVAFS-10			7.71 ng/mL	96.4%	MDN2025	0.6%	MDN2025	97.60%	MDN0770	0.034 ng/Bottle
						MDN2573	1.1%	MDN2573	99.95%		

2006-154	10/12/200	0.99980	0.140 ng/L	7.69 ng/mL	96.1%	MDN0912	1.8%	MDN0912	97.35%	MDN2585	0.006 ng/Bottle
	CVAFS-9			8.14 ng/mL	101.7%	MDN1916	0.7%	MDN1916	92.35%		
						MDN2140	2.3%	MDN2140	91.70%		
2006-155	10/12/200	0.99990	0.120 ng/L	7.68 ng/mL	96.0%	MDN0148	0.3%	MDN0148	98.25%		
	CVAFS-10			7.80 ng/mL	97.5%	MDN1929	0.8%	MDN1929	103.95%		
						MDN2761	5.8%	MDN2761	96.10%		
2006-156	10/17/200	0.99980	0.150 ng/L	8.20 ng/mL	102.5%	MDN1939	2.0%	MDN1939	93.50%	MDN2469	0.016 ng/Bottle
	CVAFS-9			7.72 ng/mL	96.5%	MDN2079	6.0%	MDN2079	99.15%		
	3,111,0,7			, , , <u> </u>	70.070	MDN2696	4.1%	MDN2696	98.05%		
						11251 (20)0	11170	11251 (2070	70.0370		
2006-157	10/17/200	0.99990	0.140 ng/L	7.77 ng/mL	97.1%	MDN0966	8.2%	MDN0966	96.55%		
	CVAFS-10			$7.90~\mathrm{ng/mL}$	98.8%	MDN2524	3.8%	MDN2524	102.90%		
						MDN2789	1.0%	MDN2789	97.00%		
2007 150	10 /25 /200	0.00040	0.150 /1	0.14 /	101.70/	MDN10775	1 10/	MDNIOZZE	101 450/	MDN12757	0.024 /B
2006-158	10/25/200 CVAFS-9	0.99940	$0.150~\mathrm{ng/L}$	8.14 ng/mL	101.7% 100.2%	MDN0765	1.1% 6.9%	MDN0765	101.45%	MDN2657	0.024 ng/Bottle
	CVAF3-9			8.02 ng/mL	100.276	MDN2596 MDN2793	0.9%	MDN2596 MDN2793	91.15% 93.65%		
						MDN2/93	0.270	MIDIN2/93	93.0370		
2006-159	10/18/200	0.99980	0.140 ng/L	8.23 ng/mL	102.9%	MDN2018	1.7%	MDN2018	100.60%		
	CVAFS-9			$8.00~\mathrm{ng/mL}$	99.9%	MDN2023	3.4%	MDN2023	96.95%		
						MDN2212	0.6%	MDN2212	97.85%		
2006-160	10/18/200	0.99980	0.150 ng/L	7.93 ng/mL	99.1%	MDN2456	10.0%	MDN2456	98.10%		
2000-100	CVAFS-10	0.77780	0.130 lig/ L	8.22 ng/mL	102.7%	MDN2682	0.0%	MDN2682	101.00%		
	C V 711 5-10			0.22 lig/ lill.	102.770	MDN2786	1.6%	MDN2786	108.80%		
						MD1\2700	1.070	WID1\2700	100.0070		
2006-161	10/25/200	0.99990	0.120 ng/L	7.91 ng/mL	98.9%	MDN0161	2.0%	MDN0161	82.10%		
	CVAFS-10			8.25 ng/mL	103.1%	MDN0973	1.0%	MDN0973	99.50%		
						MDN1924	0.3%	MDN1924	99.40%		
2007 472	10 /27 /200	0.00050	0.140	702. / 1	07.00/	MDNIO024	2.40/	MDNIO024	06.450/	MDN/2054	0.017 = /P ::1
2006-162	10/27/200	0.99950	$0.140~\mathrm{ng/L}$	7.83 ng/mL	97.8%	MDN0836	3.1%	MDN0836	96.45%	MDN2054	0.016 ng/Bottle
	CVAFS-9			8.21 ng/mL	102.6%	MDN2313	2.7%	MDN2313	97.50%		
						MDN2377	4.1%	MDN2377	102.25%		

2006-163	10/27/200	0.99980	0.141 ng/L	7.84 ng/mL	98.0%	MDN0772	9.2%	MDN0772	97.10%		
2000-103	CVAFS-10	0.99960	0.141 lig/L	7.81 ng/mL	97.6%	MDN0772 MDN2258	0.2%	MDN0772 MDN2258	98.35%		
	CV/II-3-10			7.01 lig/lill.	97.070	MDN2633	2.4%	MDN2633	106.40%		
						MDN2033	2.470	MDN2033	100.4076		
2006-164	11/4/2006	0.99980	0.180 ng/L	8.19 ng/mL	102.4%	MDN0639	0.0%	MDN0639	99.80%	MDN1995	0.047 ng/Bottle
	CVAFS-9			$7.79~\mathrm{ng/mL}$	97.4%	MDN0843	0.9%	MDN0843	91.90%		
						MDN2282	6.1%	MDN2282	100.60%		
2006-165	11/7/2006	0.99950	$0.170~\mathrm{ng/L}$	8.38 ng/mL	104.7%	MDN0150	1.8%	MDN0150	103.05%	MDN2694	0.026 ng/Bottle
	CVAFS-9			7.95 ng/mL	99.4%	MDN0172	10.2%	MDN0172	102.70%		
						MDN0797	4.6%	MDN0797	102.60%		
2006-166	11/7/2006	0.99970	0.160 ng/L	7.91 ng/mL	98.8%	MDN0389	3.7%	MDN0389	101.90%		
	CVAFS-10			8.20 ng/mL	102.5%	MDN0407	5.3%	MDN0407	109.95%		
						MDN2078	11.8%	MDN2078	99.25%		
2007 177	11 / 1 / 2007	0.00000	0.170 /1	775 / X	04.00/	MDN10020	0.10/	MDN10020	102.2007	MDN10200	0.045 /P v.l
2006-167	11/4/2006	0.99980	$0.170~\mathrm{ng/L}$	7.75 ng/mL	96.8%	MDN0020	0.1%	MDN0020	102.20%	MDN2299	0.015 ng/Bottle
	CVAFS-10			8.04 ng/mL	100.4%	MDN0090	0.3%	MDN0090	96.75%		
						MDN2145	13.0%	MDN2145	102.05%		
2006-168	11/14/200	0.99970	0.160 ng/L	8.29 ng/mL	103.6%	MDN2546	9.0%	MDN2546	101.70%		
	CVAFS-9			7.99 ng/mL	99.8%	MDN2697	0.5%	MDN2697	102.15%		
						MDN2755	2.6%	MDN2755	101.70%		
2006-169	11/14/200	0.99940	0.120 ng/L	7.74 ng/mL	96.7%	MDN0180	11.7%	MDN0180	100.70%		
	CVAFS-10			7.66 ng/mL	95.7%	MDN0832	3.9%	MDN0832	98.65%		
						MDN1738	0.1%	MDN1738	97.85%		
2007 450	44 /04 /000	0.00040	0.470 /1	0.44	405.407	3.6D3.104.04	2.00/	NEDNI2404	4.04.4007	NEDNIO4 44	0.042 /D v1
2006-170	11/21/200	0.99940	0.170 ng/L	8.41 ng/mL	105.1%	MDN2194	2.9%	MDN2194	101.40%	MDN0141	0.013 ng/Bottle
	CVAFS-9			8.11 ng/mL	101.3%	MDN2429 MDN2731	4.1%	MDN2429	99.75%	MDN1936	0.011 ng/Bottle
						MDN2/31	2.3%	MDN2731	101.85%		
2006-171	11/15/200	0.99920	$0.160~\mathrm{ng/L}$	$7.93~\mathrm{ng/mL}$	99.1%	MDN0750	0.7%	MDN0750	96.65%	MDN0439	0.020 ng/Bottle
	CVAFS-9			$7.87~\mathrm{ng/mL}$	98.4%	MDN2561	0.5%	MDN2561	100.00%		
						MDN2750	0.0%	MDN2750	92.60%		

2006-172	11/20/200	0.99990	0.140 ng/L	7.69 ng/mL	96.1%	MDN2486	2.4%	MDN2486	97.80%		
	CVAFS-10			7.31 ng/mL	91.4%	MDN2590	2.7%	MDN2590	98.65%		
						MDN2661	4.0%	MDN2661	93.45%		
2006-173	11/15/200	0.99940	0.120 ng/L	7.49 ng/mL	93.6%	MDN0754	2.7%	MDN0754	98.20%	MDN2312	0.012 ng/Bottle
2000-173		0.99940	0.120 fig/L	· ·						MDN2312	0.012 fig/ Bottle
	CVAFS-10			8.24 ng/mL	102.9%	MDN1963	2.6%	MDN1963	102.15%		
						MDN2522	3.8%	MDN2522	102.85%		
2006-174	11/21/200	0.99990	0.130 ng/L	7.57 ng/mL	94.6%	MDN0857	9.0%	MDN0857	93.15%		
	CVAFS-10		······································	7.29 ng/mL	91.1%	MDN2473	0.5%	MDN2473	93.15%		
	G,111 B 10			,12, 118, 1111	711170	MDN2727	12.6%	MDN2727	85.55%		
						111111111111111111111111111111111111111	12.075	111111111111111111111111111111111111111	00.0070		
2006-175	11/20/200	0.99950	0.170 ng/L	8.17 ng/mL	102.1%	MDN0911	8.8%	MDN0911	92.50%		
	CVAFS-9			7.84 ng/mL	98.0%	MDN1966	2.0%	MDN1966	101.00%		
						MDN2413	1.9%	MDN2413	98.25%		
2006-176	11/22/200	0.99940	0.160 ng/L	8.51 ng/mL	106.4%	MDN0934	3.7%	MDN0934	102.55%		
	CVAFS-9			8.16 ng/mL	102.0%	MDN0945	0.9%	MDN0945	102.85%		
						MDN2154	0.3%	MDN2154	95.80%		
2006-177	11/22/200	0.99990	$0.100 \; \mathrm{ng/L}$	7.59 ng/mL	94.8%	MDN1920	9.7%	MDN1920	94.20%	MDN2523	0.036 ng/Bottle
	CVAFS-10			7.65 ng/mL	95.6%	MDN2103	8.2%	MDN2103	90.10%		
						MDN2423	6.5%	MDN2423	98.25%		
2006-178	11/30/200	0.99920	$0.180~\mathrm{ng/L}$	8.48 ng/mL	105.9%	MDN0405	4.6%	MDN0405	100.05%	MDN2656	0.019 ng/Bottle
	CVAFS-9			8.04 ng/mL	100.4%	MDN1733	4.3%	MDN1733	102.60%		
						MDN2057	2.1%	MDN2057	101.05%		
2006-179	12/4/2006	0.99930	$0.180~\mathrm{ng/L}$	8.31 ng/mL	103.9%	MDN2390	1.8%	MDN2390	102.65%	MDN0297	0.039 ng/Bottle
	CVAFS-9			$8.09~\mathrm{ng/mL}$	101.1%	MDN2576	2.0%	MDN2576	100.70%		
						MDN2589	5.2%	MDN2589	102.90%		
2006-180	11/30/200	0.99990	$0.150~\mathrm{ng/L}$	$7.70~\mathrm{ng/mL}$	96.2%	MDN2158	7.1%	MDN2158	94.00%		
	CVAFS-10			7.69 ng/mL	96.1%	MDN2407	9.1%	MDN2407	88.40%		
						MDN3000	7.9%	MDN3000	97.40%		

2006-181	12/5/2006	0.99940	$0.150~\mathrm{ng/L}$	8.37 ng/mL	104.6%	MDN0646	3.4%	MDN0646	100.60%		
	CVAFS-9			8.04 ng/mL	100.4%	MDN1931	1.5%	MDN1931	100.00%		
						MDN2157	2.8%	MDN2157	102.15%		
2006-182	12/8/2006	0.99980	0.170 ng/L	7.97 ng/mL	99.6%	MDN0414	1.5%	MDN0414	97.00%	MDN2159	0.063 ng/Bottle
	CVAFS-9			7.76 ng/mL	97.0%	MDN0790	8.0%	MDN0790	100.25%		
						MDN2709	2.2%	MDN2709	100.70%		
2006-183	12/8/2006	0.99990	$0.150~\mathrm{ng/L}$	7.78 ng/mL	97.2%	MDN0260	0.4%	MDN0260	106.95%	MDN0982	0.014 ng/Bottle
	CVAFS-10			7.71 ng/mL	96.3%	MDN0283	1.2%	MDN0283	92.05%		
						MDN0720	7.1%	MDN0720	95.80%		
2006-184	12/4/2006	0.99990	$0.140~\mathrm{ng/L}$	7.68 ng/mL	96.0%	MDN2294	9.0%	MDN2294	96.40%		
	CVAFS-10			7.81 ng/mL	97.6%	MDN2633	2.4%	MDN2633	106.40%		
						MDN2803	2.1%	MDN2803	101.15%		
2006-185	12/5/2006	0.99990	$0.150~\mathrm{ng/L}$	7.79 ng/mL	97.3%	MDN2395	9.4%	MDN2395	89.50%		
	CVAFS-1			$7.99~\mathrm{ng/mL}$	99.9%	MDN2512	10.9%	MDN2512	94.50%		
						MDN2524	11.1%	MDN2524	100.20%		
2006-186	12/12/200	0.99970	$0.000~\mathrm{ng/L}$	7.95 ng/mL	99.3%	MDN0129	2.1%	MDN0129	92.20%		
	CVAFS-9			7.95 ng/mL	99.3%	MDN0255	2.7%	MDN0255	101.05%		
						MDN2511	0.3%	MDN2511	97.15%		
2006-187	12/12/200	1.00000	0.170 ng/L	7.76 ng/mL	96.9%	MDN0796	5.6%	MDN0796	93.95%	MDN2686	0.011 ng/Bottle
	CVAFS-10			7.68 ng/mL	96.0%	MDN0870	12.5%	MDN0870	92.75%		
						MDN2409	0.3%	MDN2409	98.86%		
2006-188	12/18/200	0.99970	$0.150~\mathrm{ng/L}$	$7.92~\mathrm{ng/mL}$	99.0%	MDN0165	4.3%	MDN0165	97.00%		
	CVAFS-9			$7.80~\mathrm{ng/mL}$	97.5%	MDN0479	0.7%	MDN0479	93.30%		
						MDN2657	1.4%	MDN2657	96.10%		
2006-189	12/18/200	0.99990	0.170 ng/L	7.90 ng/mL	98.8%	MDN0765	10.3%	MDN0765	90.35%		
	CVAFS-10			$7.52~\mathrm{ng/mL}$	94.0%	MDN2239	2.8%	MDN2239	93.95%		

						MDN2618	3.5%	MDN2618	85.85%		
2006-190	12/19/200	0.99970	0.140 ng/L	7.93 ng/mL	99.1%	MDN0895	1.5%	MDN0895	100.35%	MDN0943	0.016 ng/Bottle
2000-170	CVAFS-9	0.55570	0.140 lig/ L	7.70 ng/mL	96.3%	MDN2003	1.8%	MDN2003	96.45%	MDINOSAS	0.010 lig/ Dottle
	O,THO,			/// v 11g/ 11113	70.570	MDN2466	0.8%	MDN2466	98.45%		
							0.07				
2006-191	12/19/200	1.00000	0.170 ng/L	7.94 ng/mL	99.3%	MDN0804	12.7%	MDN0804	95.95%	MDN2792	0.041 ng/Bottle
	CVAFS-10			7.72 ng/mL	96.5%	MDN2108	3.0%	MDN2108	93.75%		
						MDN2668	1.6%	MDN2668	93.90%		
2006-192	12/21/200	0.99980	0.150 ng/L	8.06 ng/mL	100.7%	MDN2118	2.6%	MDN2118	96.50%	MDN2637	0.014 ng/Bottle
2000-192	CVAFS-9	0.99980	0.130 lig/ L	7.77 ng/mL	97.1%	MDN2300	1.2%	MDN2300	98.20%	MDN2037 MDN2012	0.014 ng/Bottle
	CVIII'3-7			7.77 lig/linL	27.170	MDN2306	6.1%	MDN2306	95.60%	MIDINZUIZ	0.010 fig/ Dottie
						1125112500	0.175	1,1131 (2300	20.0070		
2006-193	12/22/200	0.99980	0.170 ng/L	8.06 ng/mL	100.7%	MDN0662	2.6%	MDN0662	95.70%		
	CVAFS-9			$7.80~\mathrm{ng/mL}$	97.5%	MDN2027	3.6%	MDN2027	99.00%		
						MDN2256	2.6%	MDN2256	96.40%		
2006-194	12/29/200	0.99980	0.170 ng/L	8.14 ng/mL	101.7%	MDN0847	3.5%	MDN0847	97.35%	MDN0255	0.017 ng/Bottle
	CVAFS-9		O,	7.82 ng/mL	97.8%	MDN2634	8.1%	MDN2634	96.05%		g,
						MDN2762	1.4%	MDN2762	98.65%		
2006-195	12/21/200	0.99890	$0.140~\mathrm{ng/L}$	$7.80~\mathrm{ng/mL}$	97.5%	MDN2519	2.4%	MDN2519	87.10%		
	CVAFS-10			7.71 ng/mL	96.3%	MDN2694	5.8%	MDN2694	93.20%		
						MDN2717	0.9%	MDN2717	91.55%		
2006-197	12/29/200	0.99990	0.120 ng/L	7.85 ng/mL	98.1%	MDN2058	4.4%	MDN2058	99.90%	MDN2013	0.007 ng/Bottle
	CVAFS-10			7.67 ng/mL	95.9%	MDN2367	1.2%	MDN2367	94.35%		
						MDN2601	1.4%	MDN2601	98.80%		
2006-198	12/22/200	0.99990	0.000 ng/L	7.88 ng/mL	98.4%	MDN0832	3.9%	MDN0832	98.65%	MDN0723	0.019 ng/Bottle
	CVAFS-10			7.51 ng/mL	93.8%	MDN2165	1.8%	MDN2165	96.60%		515 17 1-8, II 51610
				<i>6</i> ,		MDN2683	5.0%	MDN2683	91.05%		
2006-196	1/3/2007	1.00000	$0.160~\mathrm{ng/L}$	8.01 ng/mL	100.1%	MDN0668	1.1%	MDN0668	105.55%		
	CVAFS-9			7.64 ng/mL	95.4%	MDN2014	0.9%	MDN2014	93.20%		

						MDN2695	3.4%	MDN2695	97.40%		
2006-199	1/3/2007	1.00000	0.100 ng/L	7.87 ng/mL	98.3%	MDN0173	4.5%	MDN0173	100.40%		
	CVAFS-10			7.91 ng/mL	98.9%	MDN0437	10.2%	MDN0437	102.45%		
						MDN2783	0.9%	MDN2783	98.25%		
2006-200	1/4/2007	0.99990	$0.150~\mathrm{ng/L}$	$8.09~\mathrm{ng/mL}$	101.1%	MDN1734	2.7%	MDN1734	100.25%	MDN0693	0.015 ng/Bottle
	CVAFS-9			7.98 ng/mL	99.8%	MDN2074	2.2%	MDN2074	97.20%		
						MDN2383	3.5%	MDN2383	97.50%		
2006-201	1/4/2007	0.99990	0.120 ng/L	7.78 ng/mL	97.2%	MDN0911	2.7%	MDN0911	98.85%		
	CVAFS-10			7.74 ng/mL	96.7%	MDN2393	3.0%	MDN2393	96.75%		
						MDN2540	3.3%	MDN2540	99.65%		
2006-202	1/9/2007	0.99960	0.150 ng/L	8.28 ng/mL	103.4%	MDN2348	1.6%	MDN2348	100.75%	MDN2792	0.052 ng/Bottle
	CVAFS-9			7.96 ng/mL	99.5%	MDN2441	5.2%	MDN2441	99.90%		Ü
				· ·		MDN2681	1.5%	MDN2681	100.00%		
2006-203	1/9/2007	1.00000	0.110 ng/L	7.85 ng/mL	98.1%	MDN0389	4.9%	MDN0389	102.30%		
	CVAFS-10		O,	7.90 ng/mL	98.7%	MDN2023	1.2%	MDN2023	98.90%		
				0.		MDN2151	0.2%	MDN2151	98.65%		
2006-204	1/11/2007	0.99970	0.180 ng/L	8.21 ng/mL	102.6%	MDN1976	4.7%	MDN1976	79.30%	MDN0815	0.018 ng/Bottle
	CVAFS-9		6,	8.00 ng/mL	100.0%	MDN2543	5.0%	MDN2543	103.50%		8, 111
				0,1		MDN2802	6.1%	MDN2802	97.25%		
2006-205	1/15/2007	0.99990	0.130 ng/L	8.00 ng/mL	99.9%	MDN0277	11.3%	MDN0277	96.60%		
2000-203	CVAFS-9	0.99990	0.130 fig/ L	7.71 ng/mL	96.3%	MDN2361	2.0%	MDN2361	95.55%		
	C V 111 5-7			7.71 ng/mil	70.570	MDN2576	2.0%	MDN2576	100.70%		
						11151 (2570	2.070	11151 (25)	100.7070		
2006-206	1/15/2007	0.99990	$0.070~\mathrm{ng/L}$	7.84 ng/mL	97.9%	MDN0831	0.7%	MDN0831	89.95%		
	CVAFS-10			$7.62~\mathrm{ng/mL}$	95.3%	MDN2136	1.3%	MDN2136	92.85%		
						MDN2719	5.0%	MDN2719	98.90%		
2006-207	1/22/2007	0.99960	0.130 ng/L	7.95 ng/mL	99.4%	MDN0492	3.2%	MDN0492	100.15%		

	CVAFS-9			7.94 ng/mL	99.2%	MDN2276 MDN2313	7.0% 4.8%	MDN2276 MDN2313	99.30% 98.40%
2006-208	1/26/2007 CVAFS-9	0.99980	$0.140~\mathrm{ng/L}$	8.14 ng/mL 7.93 ng/mL	101.7% 99.1%	MDN2019 MDN2035	3.9% 0.0%	MDN2019 MDN2035	94.90% 94.80%
						MDN2703	3.8%	MDN2703	98 30%

2006 Methyl Mercury QC Summary

<u>DataSetID</u>		Batch #	Calibration	Prep Blk	<u>Dorm - 2</u> TV=44700		Duplicate	<u>es</u>	<u>Spikes</u>		
			R	Conc	ng/mL	%Rec	Comp ID	RPD	Comp ID	%Rec	RPD.
MHG7-060105-1	1/5/2006	Batch#162	0.99974	0.330 ng/L	4086.718 ng/L	91.40%	LA2320051121	37.50%	18WA20051129 MS	99.31%	1.40%
	MHg7						LA2320051121	22.50%	18WA20051129 MSD	100.92%	
MHG7-060111-1	1/11/2006	Batch#163	0.99953	0.020 ng/L	2.547 ng/L	113.70%			LA0520051129 MS	103.21%	3.60%
	MHg7				$5036.720~\mathrm{ng/L}$	112.70%			LA0520051129 MSD	99.50%	
MHG7-060118-1	1/18/2006	Batch#164	0.99852	0.030 ng/L	2.562 ng/L	114.40%	OR10 COMP 039	9.10%	OR10 COMP 039 MS OR10 COMP 039	102.39%	1.20%
	MHg7				4957.470 ng/L	110.90%			MSD	100.95%	
MHG7-060125-1	1/25/2006	Batch#165	0.99917	0.100 ng/L	2.487 ng/L	111.00%	WA2020051206	3.80%	WA1820051129 MS	104.8%	2.20%
	MHg7				5083.476 ng/L	113.70%	WA2020051206	9.30%	WA1820051129 MSD	102.5%	
MIIC7 0(012(1	1/2//2004	D 1//466		0.000 /7	2.464	440.000/	OR01 COMP	0.000/	0004 00040 005 140	00.000/	• 000/
MHG7-060126-1	1/26/2006	Batch#166	0.99928	0.230 ng/L	2.464 ng/L	110.00%	025	9.20%	OR01 COMP 025 MS OR01 COMP 025	98.90%	2.80%
	MHg7				5255.454 ng/L	117.60%			MSD	102.45%	
MHG7-060206-1	2/6/2006	Batch#161	0.99996	0.230 ng/L	2.480 ng/L	110.70%	OR10 COMP 038	4.90%	OR10 COMP 038 MS OR10 COMP 038	81.72%	5.60%
	MHg7				4331.021 ng/L	96.90%			MSD	76.47%	
MHG1-060207-1	2/7/2006	Batch#159	0.99989	0.130 ng/L	2.287 ng/L	102.10%	VT98 COMP 003	5.50%	VT98 COMP 003 MS VT98 COMP 003	76.35%	4.80%
	MHg1				$4574.800~\mathrm{ng/L}$	102.30%			MSD	80.26%	
MHG1-060208-1	2/8/2006	Batch#160	0.99868	0.250 ng/L	2.197 ng/L	98.10%	18WA20051115	9.60%	WA1920051108 MS	92.91%	11.30%
	MHg1				4982.427 ng/L	111.50%			WA1920051108 MSD	80.28%	
MHG7-060302-1	3/2/2006	Batch#167	0.99939	0.350 ng/L	2.462 ng/L	109.90%	OR10 COMP 040	6.00%	OR10 COMP 040 MS	85.69%	4.50%
	MHg7				4989.432 ng/L	111.60%			OR10 COMP 040 MSD	81.14%	

MHG1-060308-1	3/8/2006 MHg1	Batch#168	0.99967	0.210 ng/L	2.350 ng/L 4699.868 ng/L	104.90% 105.10%	18WA20060110	10.80%			
MHG1-060309-1	3/9/2006 MHg1	Batch#169	0.99919	0.130 ng/L	2.601 ng/L 5088.542 ng/L	116.10% 113.80%	OR10 COMP 041	1.20%	OR10 COMP 041 MS OR10 COMP 041 MSD	121.1% 118.6%	2.00%
MHG7-060321-1	3/21/2006 MHg7	Batch#170	0.99939	0.190 ng/L	2.264 ng/L 4290.540 ng/L	101.10% 96.00%			18WA20060131 MS 18WA20060131 MSD	130.93% 125.08%	4.60%
MHG7-060322-1	3/22/2006 MHg7	Batch#171	0.99827	0.190 ng/L	2.466 ng/L 5142.522 ng/L	110.10% 115.00%	WA2120060131	10.90%	LA2820060207 MS LA2820060207 MSD	104.0% 85.8%	19.2%
MHG7-060510-1	5/10/2006 MHg7	Batch#172	0.99949	0.370 ng/L	2.338 ng/L 4675.632 ng/L	104.40% 104.60%			WA2120060207 MS WA2120060207 MSD	109.70% 110.20%	0.50%
MHG7-060516-1	5/16/2006 MHg7	Batch#173	0.9997	$0.050~\mathrm{ng/L}$	4600.607 ng/L	102.90%			LA1020060227 MS LA1020060227 MSD	90.06% 100.85%	10.80%
MHG7-060524-1	5/24/2006 MHg7	Batch#174	0.99989	$0.050~\mathrm{ng/L}$	2.032 ng/L 4305.461 ng/L	90.70% 96.30%	18WA20060314	20.60%	FL32(cb)20060307 MS FL32(cb)20060307 MSD	92.84% 81.80%	12.70%
MHG7-060525-1	5/25/2006 MHg7	Batch#175	0.99965	0.090 ng/L	2.068 ng/L 4234.018 ng/L	92.30% 94.70%	WA2120060314	3.70%	LA2320060321 MS LA2320060321 MSD	93.52% 89.67%	4.10%
MHG7-060601-1	6/1/2006 MHg7	Batch#176	0.99975	$0.020~\mathrm{ng/L}$	4760.109 ng/L	106.50%	OR10 COMP 043	6.00%	OR10 COMP 043 MS OR10 COMP 043 MSD	101.94% 85.39%	15.70%
MHG7-060605-1	6/5/2006 MHg7	Batch#177	0.99989	0.080 ng/L	2.134 ng/L 4689.478 ng/L	95.30% 104.90%	IL11 COMP 039	18.80%	WI99 COMP 121 MS WI99 COMP 121 MSD	97.21% 104.07%	6.30%
MHG7-060607-1	6/7/2006 MHg7	Batch#178	0.99987	0.150 ng/L	1.870 ng/L 4015.386 ng/L	83.50%	WA2020060411	8.60%	WA2120060418 MS WA2120060418 MSD	123.70% 116.60%	5.90%

MHG7-060608-1	6/8/2006 MHg7	Batch#179	0.99947	0.200 ng/L	4175.842 ng/L	93.40%	WA1820060501	10.20%	WA1920060501 MS WA1920060501 MSD	92.80% 89.90%	3.20%
MHG7-060613-1	6/13/2006 MHg7	Batch#180	0.99973	$0.080~\mathrm{ng/L}$	2.327 ng/L 5290.475 ng/L	103.90%	VA98 COMP 018	9.50%	LA0520060502 MS LA0520060502 MSD	109.65% 125.55%	13.50%
MHG7-060615-1	6/15/2006 MHg7	Batch#181	0.99971	0.160 ng/L	2.427 ng/L 4449.464 ng/L	108.40% 99.50%	LA2020060501	9.60%	LA0520060509 MS LA0520060509 MSD	104.90% 101.60%	3.20%
MHG7-060628-1	6/28/2006 MHg7	Batch#182	0.9994	$0.080~\mathrm{ng/L}$	2.000 ng/L 4485.458 ng/L	89.30% 100.30%			WI31 COMP 054 MS WI31 COMP 054 MSD	100.31% 98.87%	1.30%
MHG7-060720-1	7/20/2006 MHg7	Batch#183	0.99621	0.090 ng/L	4077.226 ng/L	91.20%	OR10 COMP 045	12.90%			
MHG7-060727-1	7/27/2006 MHg7	Batch#184	0.99868	0.050 ng/L	4356.121 ng/L	97.50%	VT99 COMP 011	6.00%	VT98 COMP 011 MS VT98 COMP 011 MSD	95.47% 101.55%	3.70%
MHG7-060809-1	8/9/2006 MHg7	Batch#185	0.99999	$0.070~\mathrm{ng/L}$	2.141 ng/L 4217.801 ng/L	95.60% 94.40%			WA2120060530 MS WA2120060530 MSD	92.50% 89.10%	3.70%
MHG7-060810-1	8/10/2006 MHg7	Batch#186	0.99989	0.120 ng/L	4519.728 ng/L	101.10%	KM620060605	4.60%	KM520060605 MS KM520060605 MSD	112.70% 123.80%	9.30%
MHG7-060817-1	8/17/2006 MHg7	Batch#187	0.99992	$0.070~\mathrm{ng/L}$	4775.004 ng/L	106.80%			VA0820060627 MS VA0820060627 MSD	119.46% 122.83%	2.80%
MHG15-060823-1	8/23/2006 MHg15	Batch#188	0.99888	0.220 ng/L	2.619 ng/L	116.90%			PA1920060627 MS PA1920060627 MSD	99.30% 109.50%	9.80%
MHG15-061005-1	10/5/2006 MHg15	Batch#190	0.99757	0.030 ng/L	2.454 ng/L	109.50%	VT98 COMP 012	3.30%	VT98 COMP 012 MS VT98 COMP 012 MSD	102.63% 84.15%	18.90%

MHG7-061024-1	10/24/200 MHg7	Batch#192	0.99941	0.100 ng/L	2.334 ng/L	104.20%	FL32 COMP 037	23.50%	TN12 COMP 001 MS TN12 COMP 001 MSD	109.76% 106.60%	2.50%
MHG15-061025-1	10/25/200 MHg15	Batch#189	0.9998	0.120 ng/L	2.300 ng/L	102.70%			FL32 COMP 036 MS FL32 COMP 036 MSD	82.62% 105.26%	20.70%
MHG7-061101-1	11/1/2006 MHg7	Batch#191	0.99998	0.110 ng/L	$2.015~\mathrm{ng/L}$	89.90%	LA0520060705	33.70%	LA2820060711MS LA2820060711MSD	107.70% 104.60%	2.90%
MHG7-061102-1	11/2/2006 MHg7	Batch#193	1	$0.050~\mathrm{ng/L}$			LA2820060705	14.60%	LA0520060829 MS LA0520060829 MSD	92.20% 83.70%	9.70%
MHG15-061102-1	11/2/2006 MHg15	Batch#194	0.99888	$0.050~\mathrm{ng/L}$			LA2320060801	11.70%	VT98 COMP 013 MS VT98 COMP 013 MSD	79.52% 103.55%	22.70%
MHG15-061107-1	11/7/2006 MHg15	Batch#195	0.99991	0.130 ng/L	2.517 ng/L	112.40%	99PR20060829	30.20%	99PR20060627 MS 99PR20060627 MSD	102.50% 102.36%	0.10%
MHG7-061108-1	11/8/2006 MHg7	Batch#196	0.99816	0.130 ng/L	2.257 ng/L	100.80%	WA1820060919	23.90%	LA1020060919 MS LA1020060919 MSD	101.40% 104.60%	3.10%
MHG7-061109-1	11/9/2006 MHg7	Batch#197	0.99998	$0.080~\mathrm{ng/L}$	2.336 ng/L	104.30%	WA2120060919	17.10%	LA2320060919 MS LA2320060919 MSD	86.50% 96.20%	10.60%
MHG7-061115-1	11/15/200 MHg7	Batch#198	0.99981	-0.010 ng/L	2.394 ng/L	106.9 %	KY10 COMP 003	20.7%	IL11 COMP 044 MS IL11 COMP 044 MSD	92.71% 96.24%	3.3%
MHG7-061116-1	11/16/200 MHg7	Batch#199	0.99982	$0.080~\mathrm{ng/L}$	2.434 ng/L	108.7 %	VA98 COMP 23	33.3%	MN23 COMP 129 MS MN23 COMP 129 MSD	115.36% 98.23%	14.6%
MHG7-061122-1	11/22/200 MHg7	Batch#200	0.99912	0.090 ng/L			VT98 COMP 014	22.6%	TN12 COMP 003 MS TN12 COMP 003 MSD	102.84% 80.20%	23.8%

MHG7-061129-1	11/29/200 MHg7	Batch#201	0.99896	0.250 ng/L	2.093 ng/L	93.5 %	LA2820061017	221.1%	FL32 COMP 039 MS FL32 COMP 039 MSd	101.83% 101.53%	0.3%
MHG7-061130-1	11/30/200 MHg7	Batch#202	0.99996	0.060 ng/L	2.337 ng/L	104.3 %	PR9920061005	31.6%	LA2320061018 MS LA2320061018 MSD	96.1% 86.8%	10.2%
MHG7-061207-1	12/7/2006 MHg7	Batch#203	0.99985	0.090 ng/L			VT98 COMP 015 VT98 COMP 015	24.3% 33.7%	VT98 COMP 015 MS VT98 COMP 015 MSD	111.87% 89.83%	20.5%
MHG7-061214-1	12/14/200 MHg7	Batch#204	0.99967	$0.060~\mathrm{ng/L}$	2.655 ng/L	118.5 %			NJ30 COMP 010 MS NJ30 COMP 010 MSD	110.50% 115.82%	4.6%
MHG7-070104-1	1/4/2007 MHg7	Batch#205	0.99701	$0.160~\mathrm{ng/L}$	3.024 ng/L	135.0 %	LA2820061108	109.1%	WA2120061114 MS WA2120061114 MSD	111.2% 103.6%	7.1%
MHG7-070109-1	1/9/2007 MHg7	Batch#206	0.99935	0.060 ng/L			LA0520061106	33.3%	KY10 COMP 004 MS KY10 COMP 004 MSD	88.87% 121.96%	30.3%
MHG7-070110-1	1/10/2007 MHg7	Batch#207	0.99978	-0.020 ng/L	2.116 ng/L 4385.708 ng/L	94.4 % 98.1 %					
MHG7-070111-1	1/11/2007 MHg7	Batch#208	0.99962	$0.100~\mathrm{ng/L}$	1.896 ng/L	84.7 %	PR9920061129	0.0%	99PR20061129 MS 99PR20061129 MSD	101.7% 100.7%	0.9%
MHG7-070112-1	1/12/2007 MHg7	Batch#209	1110.8270	0.070 ng/L			OR10 COMP 051	41.0%	OR10 COMP 051 MS OR10 COMP 051 MSD	84.86% 94.24%	9.9%
MHG7-070117-1	1/17/2007 MHg7	Batch#210	0.99997	-0.070 ng/L	1.991 ng/L 3982.576 ng/L	88.9 % 89.1 %	FG0120061121	14.0%	FG0620061121 MS FG0620061121 MSD	83.0% 85.3%	2.7%
MHG7-070131-1	1/31/2007 MHg7	Batch#211	888.68650	-0.230 ng/L	2.307 ng/L	103.0 %	WA2020061212	15.7%	WA2120061215 MS WA2120061215 MSD	99.6% 82.9%	18.3%

MHG7-070221-1	2/21/2007 MHg7	Batch#212	0.99979	0.090 ng/L	1.948 ng/L	87.0 %	WA2120061226	13.0%	18WA20061226 MS 18WA20061226 MSD	91.1% 94.7%	3.8%
MHG7-070222-1	2/22/2007 MHg7	Batch#213	0.99919	0.040 ng/L			SC09 COMP 013	24.0%	WA2220061226 MS WA2220061226 MSD	94.1% 86.5%	8.5%
MHG15-070227-1	2/27/2007 MHg15	Batch#215	0.99911	$0.060~\mathrm{ng/L}$			WA1920070102	45.8%	LA0520070103 MS LA0520070103 MSD	103.5% 96.3%	7.2%
MHG7-070227-1	2/27/2007 MHg7	Batch#214	0.99825	$0.020~\mathrm{ng/L}$			WA2220070109	35.9%	WA1820070102 MS WA1820070102 MSD	98.5% 95.4%	3.2%
MHG7-070228-1	2/28/2007 MHg7	Batch#217	0.99930	0.060 ng/L					LA2820070129 MS LA2820070129 MSD	101.9% 103.0%	1.1%
MHG15-070228-1	2/28/2007 MHg15	Batch#216	0.99990	0.040 ng/L			WA1820070109	47.8%	OR10 COMP 052 MS OR10 COMP 052 MSD	101.92% 104.26%	2.1%
MHG7-070307-1	3/7/2007 MHg7	Batch#218	0.99781	$0.000~\mathrm{ng/L}$			TN11 COMP 007	0.0%	VT98 COMP 019 MS VT98 COMP 019 MSD	99.6% 99.6%	0.0%