

Thoughts on mechanisms of oxidized nitrogen emission and deposition

> Ronald C. Cohen October 2013

\$\$ NSF-AGS; NASA

We think we know the global budget reasonably well

 $\frac{\text{Global NO}_{x} \text{ Sources}}{\text{NO}_{x} \equiv \text{NO} + \text{NO}_{2}}$

Source	Tg N year -1	
Fuel Consumption	26	
Biomass Burning	6	
Soil Emission	9	
Lightning	5	
Total	46	

Jaegle et al. *Faraday Discussions*, **2005** Schumann and Huntreiser, ACPD **2007**

Direct observational evidence for specific processes is more ambiguous

Emissions

Atmospheric Chemistry

1. Global models find mechanistic models of soil emissions are too large.

To deal with this problem they introduce an ad hoc canopy reduction factor that removes as much as 80% of emissions that start at soils before they get to the free troposphere.

This CRF only acts on emitted NOx, not any other NOx that might enter the canopy.

2. Laboratory measurements suggest ecosystems emit NO_x directly when ambient concentrations are low.

Note most measurements by ecologists in Teflon chambers seemingly unaware of atmospheric chemistry literature showing chamber materials themselves are a source of NO_x .

"NOx Flux Conundrum" Lerdau, Munger and Jacob, Science 2000

3. Most field instruments for observing nitrogen oxides have positive artifacts

All but a few of the long term records of " NO_2 " in the world are by instruments that measure the sum of NO_2 , PAN-like molecules, RONO₂ and an indeterminate fraction of HNO₃.

Many of the "HNO₃" measurements are sums of HNO₃, and RONO₂. Or at least of the fraction of RONO₂ where R includes an -OH group (e.g. isoprene derived nitrates).

- 4. Until the last couple of years (and now only in the state-of-the-art research models), isoprene and monoterpene chemistry was so poorly represented that model-measurement comparisons that depend on having gas or aerosol chemistry right are not interpretable as mechanistic descriptions of the fate of NO_v.
- Note NO_x emissions are often tuned to get the O_3 right and not the NO_x .

LIF Detection of NO₂

Thermal Dissociation

followed by LIF detection of resulting NO₂ to infer Σ PNs, Σ ANs and HNO₃

 $XNO_2 + heat \rightarrow NO_2 + X$

$X = OH, RO \text{ or } RO_2$

Differing bond strengths lead to dissociation at characteristic temperatures

Thermal Dissociation

followed by LIF detection of resulting NO_2 to infer ΣPNs , ΣANs and HNO_3

Urban locations: Alkanes (C₆ and larger), Alkenes, Aromatics, biogenics

Rural locations: Isoprene and monoterpenes

Oil and Gas regions: Alkanes

The nitrates

4-OH-3-ONO₂

3-OH-4-ONO₂

Z-4-OH-1-ONO₂

E-4-OH-1-ONO₂

Murphy et al. **ACP 2006**

Big Hill

10 years later a comparison to an instrument capable of measuring relevant molecules at UC-BFRS (BEARPEX)

M. Beaver, et al. Atmos. Chem. Phys. 2012

Local Production (w/o transport)

Perring, Pusede and Cohen, Chemical Reviews, 2013

Monoterpene nitrate deposition vs. chemistry Browne et al 2012, 2013 ACP

WRF Standard Chemistry

WRF Our guess at better chemistry

4 strategies toward a mechanistic description of the Ncycle

- Space based trends
- Eddy fluxes
- Aerosol RONO₂

Fires and soils from space

4 strategies toward a mechanistic description of the Ncycle

- Space based trends in emissions
- Eddy fluxes
- Aerosol RONO₂

Fires and soils from space

L Valin et al., GRL 2013

Trends in the U.S. and Canada

Summer 2005

Summer 2011

Weekend 2011

Trends for select cities and power plants

Trends in cities are similar while trends at power plants are more variable

47 cities, 23 power plants!

The impact of the economic recession on emissions is observed by OMI

The impact of the economic recession on emissions is observed by OMI

The impact of the economic recession on emissions is observed by OMI

Reductions on weekdays are larger than those on weekends due to reductions in diesel traffic and/or diesel emissions

Weekdays: $-34 \pm 8\%$

Weekends: -27 ± 10%

	2005 - 2007	2007 - 2009	2009 – 2011
Weekday	$-6 \pm 4\%$	$-9 \pm 4\%$	$-4 \pm 4\%$
Weekend	$-7 \pm 5\%$	$-6 \pm 7\%$	- 1 ± 7%

NO_x Trends From Space

Catalytic convertors on automobiles and controls on power plants are an extraordinary success at reducing NO_x and organics.

Analysis of space-based observations 2005–2011 trends for cities and power plants in the US show how improved vehicle technology and the economic downturn have influenced emissions.

We also looked at some background locations and observed increasing trends—oil and gas production? Climate change? ...

4 strategies toward a mechanistic description of the Ncycle

- Space based trends in emissions
- Eddy fluxes
- Aerosol RONO₂

Fires and soils from space

Kyung-Eun Min now a postdoc at NOAA

ACP, 2012, ACPD 2013

Deposition—Standard thinking

 $NO_2 + OH \rightarrow HNO_3$

HNO₃ → HNO₃
wet and dry deposition
both as gas and particle

Deposition

BEARPEX 2009

(Biosphere Effects on AeRosol & Photochemistry Experiment)

June 15th – July 31st, 2009

Focus on daytime data [9:00 – 18:00]

Sonic Anemometer, 10Hz: 3D wind data

TD-LIF, 5Hz: NO₂, \sum PN, \sum AN, HNO₃ Cohen group, UC, Berkeley Thermal Dissociation-Laser Induced Fluorescence

TD-CIMS, 3Hz: PAN, PPN, MPAN Thornton group, UW

Thermal Dissociation-Chemical Ionization Mass Spectrometry

What is RO₂NO₂?

$$NO_2 + RO_2 \xrightarrow{\leftarrow} RO_2NO_2$$

heat

Eddy-Covariance method

4 strategies toward a mechanistic description of the Ncycle

- Space based trends
- Eddy fluxes
- Aerosol RONO₂

Fires and soils from space

Drew Rollins

Rollins et al., Science Sept 7, 2012

We observe that aerosol RONO₂ is a large fraction of SOA ~30% at the two locations where we have made observations— Bakersfield and rural Alabama

Thermal Dissociation Laser Induced Fluorescence (TD-LIF)

zero and calibration flow in

Detection limit = 100 ng m⁻³ min⁻¹
Simple, easily automated calibration using NO₂ standard

-ONO2 mass only.

If mass of organic is 200-300 amu, then

27-40% of nighttime growth has an – ONO₂ functional group.

All of it—NO₃ chemistry??

A first look at NO_x sources and RONO₂ Chemistry during SOAS – Rural Alabama June/July 2013

4 strategies toward a mechanistic description of the Ncycle

- Space based trends in emissions
- Eddy fluxes
- Aerosol RONO₂

Fires and soils from space

R.C. Hudman, et al.

Interannual variation in soil NOx emissions observed from Space ACP, 2010.

Steps towards a mechanistic model of global soil nitric oxide emissions: Implementation and space-based constraints, ACP 2012

NITRIC OXIDE: LOW YIELD PRODUCT OF NITRIFYING BACTERIA

WHERE TO EXPECT LARGE NITRIC OXIDE EMISSIONS: Fertilized fields and monsoon regions

<u>Pulsing</u>: Release of soil NO following rain event, due N-buildup & reactivation of water-stressed bacteria

LARGE SOIL NO_x SOURCE INFERRED FROM SATELLITES

Satellite Constraints on Soil NO_x Emissions

Soil Emissions from fertilized agriculture

Bertram, Heckel, Richter, Burrows and Cohen, GRL 32 L24812 2005

OMI NO₂ ANOMALY

June

OMI NO₂ ANOMALY

June

Large scale features match.

What about pulsing?

Pulsing

Large scale behavior consistent with models.

Observed interannual anomaly is similar to model predictions.

Mechanistic details of pulses bear some resemblance.

Learning about the process of soil NO_x emissions remains a challenge.

Agricultural and Soil NO_x Emissions

A. Mebust, et al. ACP 2011

Mebust and Cohen GRL 2013

Mebust and Cohen, ACPD 2013

Conclusion

The combination of satellite based instruments, new in situ approaches and laboratory measurements are bringing exciting changes to how we approach describing mechanisms of N exchange and then test our understanding.

Thank you!