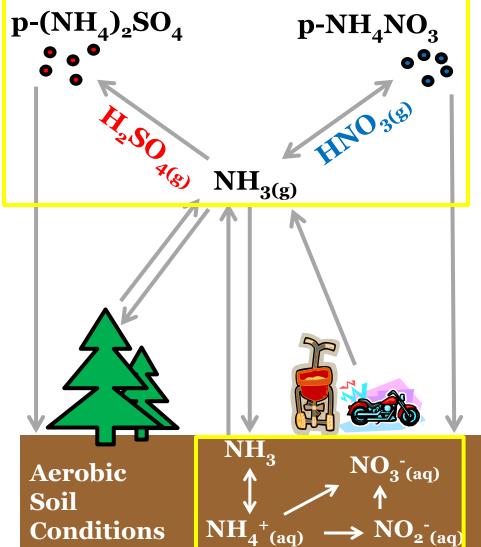
Surface-Atmosphere Exchange of Ammonia in a Non-fertilized Grassland and its Implications for PM_{2.5}

NADP 2013 Fall Meeting and Scientific Symposium October 10, 2013

Gregory R. Wentworth¹, P. Gregoire¹, A. Tevlin¹, J.G. Murphy¹

¹Department of Chemistry, University of Toronto 80 St. George Street, Toronto, ON, Canada (<u>greg.wentworth@utoronto.ca</u>)

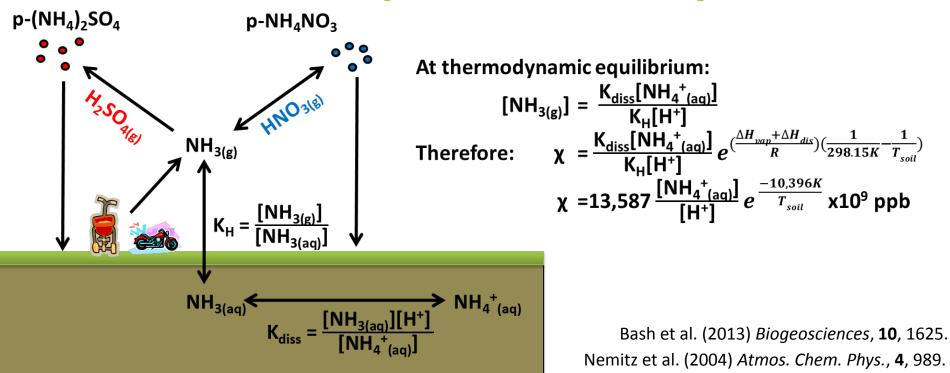
Ammonia in the Environment


Atmosphere

- Dominant alkaline gas
- 2° aerosol formation
- Emissions
 - Mostly agricultural
- Deposition
 - Traditionally a "one-way street"

Bidirectional Flux

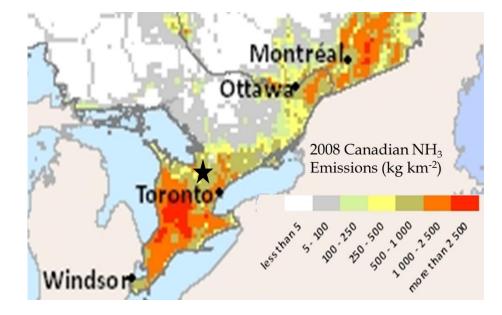
- "Two-way street"
- Governed by compensation point (χ)
- Poorly constrained
- Lacking in most models


Zhang et al. (2010) J. Geophys. Rev., 115, D20310.

Ellis et al. (2011) *Atmos. Chem. Phys.*, **11**, 133.

NH_3 Soil Compensation Point (χ_{soil})

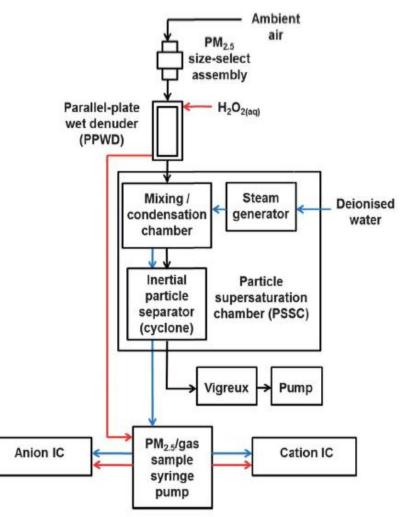
- Equilibrium between NH_{3(g, atmo)} and NH₄⁺ (aq, soil)
 - Dependent on soil temperature, pH and [NH₄⁺]
- If $NH_{3(g)} < \chi_{soil}$, then soil emission
- Bash et al. included bi-directional flux in CMAQ
 - 10% increase in NH_3 , 45% decrease in NH_3 dry deposition



CONTACT 2012

Characterizing Ontario Nitrogen Transport And Chemical Transformation

- Primary Objective
 - Provide observational constraints on χ_{soil} and NH_3 fluxes
- Motivation
 - Lack of studies over *non*-fertilized grasslands^{*}
 - Minimal field measurements of χ_{soil}
- Egbert, ON (\bigstar)
 - August 13 to October 2



^{*} Zhang et al. (2010) *J. Geophys. Rev.*, **115**, D20310.

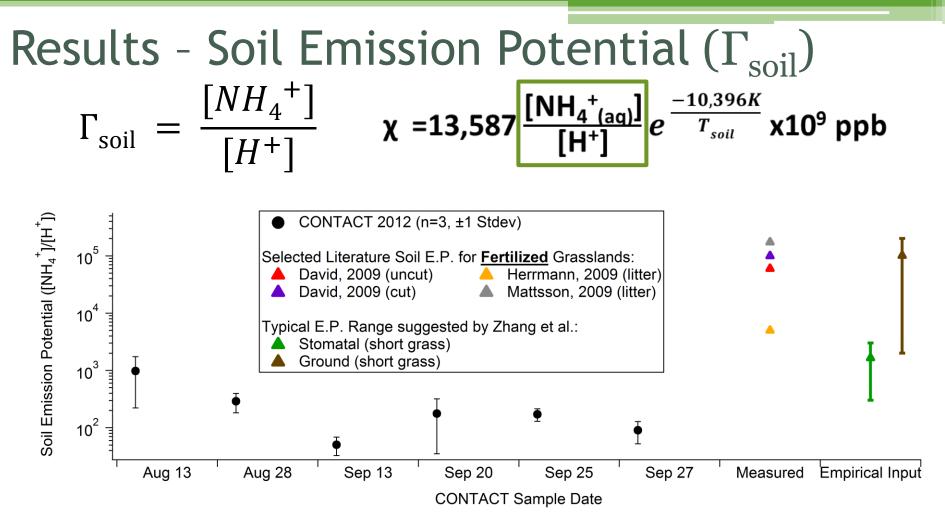
Methodology - Atmospheric Sampling


- Ambient Ion Monitor-Ion Chromatograph (AIM-IC)
- Simultaneous on-line quantification (via Ion Chromatography) of water soluble:
 - Gas-phase species (NH₃, HNO₃, SO₂, HCl, HONO, etc...)
 - Ions in PM_{2.5} (NH₄⁺, SO₄²⁻, NO₃⁻, Cl⁻, NO₂⁻, etc...)
- Hourly time resolution

Markovic et al. (2012) J. Environ. Monit., 14, 1872.

Methodology - Soil Sampling

Nitrogen Speciation



- Temperature/Water Content
 - Hourly averages with commercial sensors
- pH
 - pH electrode in 1:1 slurry of soil and deionized water
- Vegetation not sampled
 - Small N-pool relative to soil

Li et al. (2012) Commun. Soil Sci. Plan., **43**, 571.

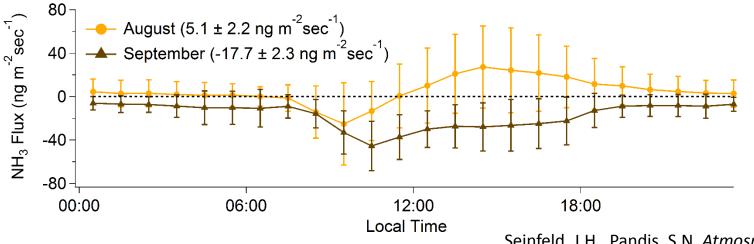
Van Miegroet. (1995) Soil Sci. Soc. Am. J., 59, 549.

- First measured Γ_{soil} in a non-fertilized grassland
- Lower end of literature value for grasslands

Zhang et al. (2010) *J. Geophys. Rev.*, **115**, D20310.

Results - $NH_{3(g)}$ and Calculated χ_{soil}

Results - Estimated Fluxes


- Assumptions:
 - ^o z_o is 0.05m
 - Soil resistance and vegetation are negligible
- Previously *measured* fluxes[†]:
 - 4 ng m⁻²s⁻¹ in summer
 - -24 ng m⁻²s⁻¹ in autumn

$$Flux = V_{exchange}^* (\chi - NH_{3(g)})$$

$$I_{\text{exchange}} \approx \frac{1}{R_a + R_b}$$

$$\mathbf{R}_{a} = \frac{ln(z_{ref}) - ln(z_{0})}{\kappa u^{*}}$$

 $V_{exchange}$ = exchange velocity R_a = aerodynamic resistance R_b = quasi-laminar resistance z_{ref} = AIM-IC inlet height z_0 = 0.05m for uncut grass κ = 0.4 u_* = friction velocity Sc = 1.07Pr = 0.72

⁺Kruit et al. (2007) *Atmos. Environ.*, **41**, 1275.

Seinfeld, J.H., Pandis, S.N. *Atmospheric Chemistry and Physics*. (Wiley, New York, 2006).

Results - NH₃ Morning Spike

- Previous studies (i.e. Ellis et al.) observe morning peak of NH_3 at ~10:00
- Possibly due to:

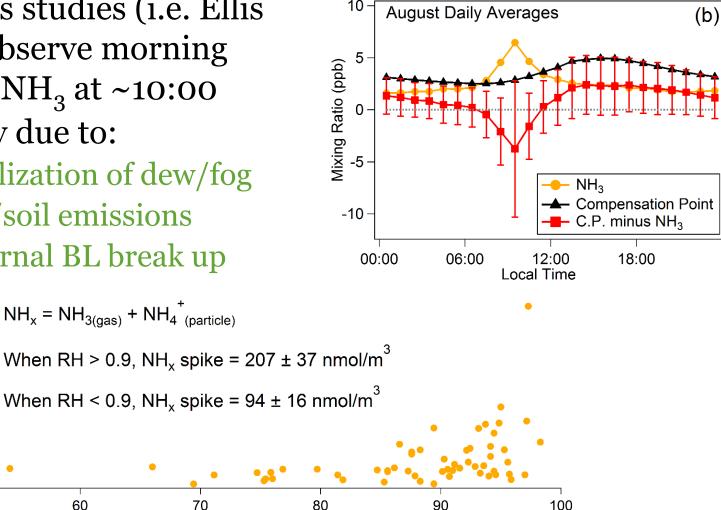
NH_x Morning Max – NH_x Night Average

(nmol/m)

1200 -

1000 -

800

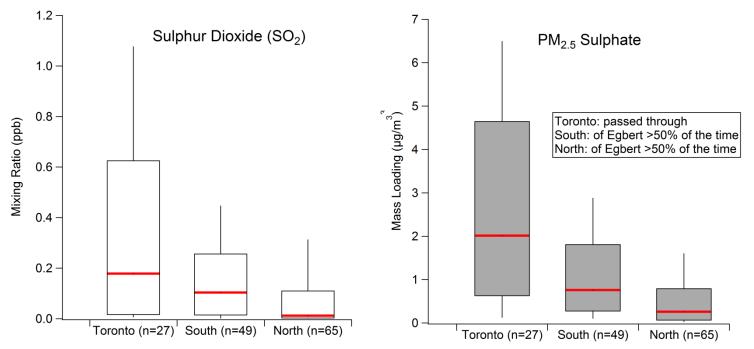

600

400

200

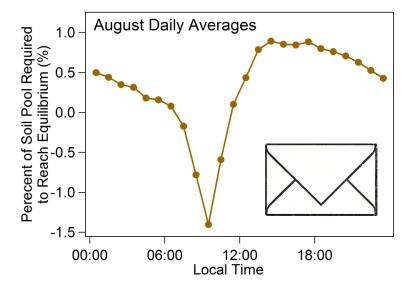
0 50

- Volatilization of dew/fog
- Plant/soil emissions
- Nocturnal BL break up



Average Nighttime (0:00-6:00) Relative Humidity (%)

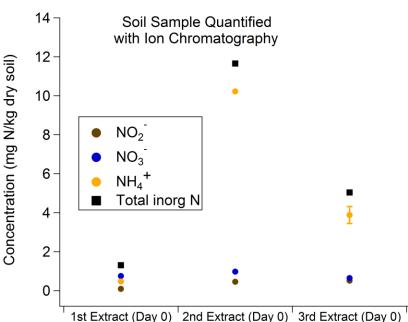
Ellis et al. (2011) Atmos. Chem. Phys., 11, 133.


Bi-directional Exchange in Action?

- Used HYSPLIT to determine 48 hour back-trajectories
 - Calculated every 6 hours during CONTACT
 - Clear directional bias for PM_{2.5} and precursor gases
 - Except NH₃
 - Spatial homogeneity of local sources or evidence for bidirectional exchange?

Bi-directional Exchange in Action?

- Is the soil pool big enough?
 - Average fluxes during August
 - Boundary layer is 1000m
 - Top 10cm of soil exchanges
 - Soil is 1.5 g/cm³


- Is the exchange fast enough (how long to reach 50% equilibrium)?
 - Using v_{ex} and $(\chi_{soil} NH_3)$ from August

Height (m)	14:00 (fast)	01:00 (slow)
1000	~11 hours	~37 hours
3	~2 min	~7 min

Difficulties in Studying NH₃ Fluxes

1. Measure Fluxes

- Typically requires intensive field work (unrealistic over large area)
- 2. Estimate Fluxes from surface and atmospheric properties (i.e. T, $[NH_4^+]$, pH, μ , NH₃, etc...)
 - Logistically easier
 - Complicated by heterogeneity
 - What methods are most representative of available NH₄⁺ and H⁺?

Conclusions

- 1. Γ_{soil} (non-fertilized grassland) is well below previous measurements for fertilized grasslands
- 2. Estimated Soil Fluxes:
 - Exhibit clear diurnal and seasonal trend
 - 5 and -18 ng m⁻²s⁻¹ for Aug and Sept, respectively
 - Consistent with previous measurements from Kruit *et al*.
- 3. Evidence that emissions from non-fertilized grasslands could sufficiently modulate *near-surface* NH_3 despite low Γ_{soil}
- 4. Morning Spike of NH_3 is likely related to dew/fog

Acknowledgements

Murphy Group

Dr. Jen Murphy Phillip Gregoire Alex Tevlin Dr. Trevor VandenBoer (MUN)

Summer Students

Rachel Hems (U of Guelph) Carol Cheyne (U of T)

Others

Geoff Stupple (Environment Canada)

Carolyn Winsborough (Geography, U of T)

Dr. Greg Evans (Chemical Engineering, U of T)

