Evaluation of bi-directional ammonia exchange in GEOS-Chem using in-situ observations

Liye (Juliet) Zhu Mechanical Engineering University of Colorado at Boulder

Funding from NASA ACMAP and EPA-STAR

Impact of NH₃

- Human health impact
- PM_{2.5} causes bronchitis, asthma, premature mortality...
- Environmental impact
- Haze, decreases visibility.
- Eutrophication of surface waters:
 - Alga blooms;
 - Hypoxia;
 - Cloudy, colored water.
- Soil acidification:
 - Nitrification of NH₄⁺ into NO₂⁻, releasing H⁺.

Smog

Eutrophication

Soil acidification

Large uncertainties in NH₃ inventories.

Assimilating remote sensing NH₃ from TES

- 4D-Var inversion (GEOS-Chem adjoint) to adjust NH₃ emissions.
- Prior NH₃ profiles lower than TES retrieval.
- Optimized NH₃ profiles increased towards TES retrieval.
- Optimized model still underestimates TES retrievals.

Zhu et al., 2013

Evaluation: model NH₃ vs AMoN obs

April

al

AMoN (ppb)

AMoN: 21 sites with 2-week long observation, Middle & Eastern US

- Slopes are all close to unity.
- R² all increased.
- In July, the model estimates are biased high.
- Possible reasons for July bias:
 - TES overpass time (1:30 at day and night) lead interest to diurnal variability of model NH₃ (Similar diurnal variability issue in CMAQ [Jeong submitted].)
 - Bi-directional exchange.

Zhu et al., 2013

Implementing diurnal variability for livestock NH₃ emissions

Surface NH₃ diurnal variability

- NH₃ decreased at night by several ppb; increased in day up to 1 ppb.
- Monthly average surface NH₃ (and NO₃⁻!) decreased.
- NH₃ concentration (at TES overpass time 13:30) can be impacted without changing total emissions.
- Improves TES assimilation results compared to Zhu et al. 2013.

Diurnal variation impact: model NH₃ vs AMoN obs

AMoN: 21 sites with 2week long observation, Middle & Eastern US

- R² increased in July.
- Slope decreased due to NH₃ monthly average decreased in July.

Process based treatment of NH₃ sources

- Bidirectional surface exchange between atmosphere & biosphere is ulletkey part of NH₃ cycle
- Most current air quality models (e.g., GEOS-Chem) do not account for: \bullet
 - bi-directional surface fluxes of NH₃
 - NH_4^+ pool in soil
 - diurnal variability of livestock emissions

- Update GC to include these 3 processes
- Applied to:
 - 0.5° x 0.667°, GEOS-5: April, July, October of 2008
 - Focus on US domain

Bi-directional exchange schematic

- [NH₄⁺]_{soil} reflects instant changes due to fertilization application and bi-directional exchange.
- [NH₃]_{compensation point} reflects instant changes of [NH₃] in atmosphere, soil & vegetation.
- Overall impact: NH₃ lifetime will be effectively extended.

References: Cooter et al., 2010; Zhang et al., 2010; Massad et al., 2010; Pleim et al., 2013; Bash et al., 2013; Hadman et al., 2013; Portter et al., 2010.

BIDI exchange impact: model NH₃ vs AMoN obs

AMoN: 21 sites with 2-week long observation, Middle &

- BIDI NH₃ increased slightly in July, improve the R² and the slop.
- BIDI NH₃ decreased in some sites in April &
- **BIDI** improvement depend on locations.

BIDI exchange impact: model NH₃ vs AMoN obs

Optimized (Zhu et al 2013) Bidi with optimized emissions

- Replacing the emission inventory in BIDI with optimized emissions from Zhu et al 2013.
- NH₃ decreased in all three months.
- BIDI decreased the NH₃ overestimate in July.
- TES assimilation with BIDI is in progress.

BIDI exchange impact: model NH_x vs NTN obs

NTN: > 200 sites in US, week long observation

- Bidi NH₃ not improved the slope.
- Bidi NH₃ still overestimate in July.

Conclusions

- Bi-directional exchange increased the NH₃ monthly mean concentration in July through out U.S., decreased in North and Middle U.S. in April & October.
- Spatial distribution differences between the BASE and BIDI are similar as CMAQ.
- Bi-directional exchange's impact mainly depending on the locations, will try case studies in fertilizer emission dominated region (e.g., Central Great Plain, South Texas, California).
- Data sources of important parameters (e.g., soil pH, fertilizer application rate) in bi-directional exchange need to be further investigated.
- Changes to NH₃ from bi-directional exchange need to be further resolved with results from top-down constraints (Zhu et al., 2013).

Thanks !

Liye.Zhu@colorado.edu

Bi-directional exchange schematic

