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Impact of NH,

Human health impact

PM, . causes bronchitis, asthma, premature mortality...

Environmental impact

Haze, decreases visibility.
Eutrophication of surface waters:
- Alga blooms;
- Hypoxia;
- Cloudy, colored water.
Soil acidification:
- Nitrification of NH,* into NO,, releasing H*.

Smog Eutrophication

Large uncertainties in NH; inventories.



Assimilating remote sensing NH, from TES

Modeled NH, Modeled NH, con.,
emissions NO; con.

VS

w===) Measured NH, con.,
NO; con.

e 4D-Var inversion (GEOS-Chem adjoint) to adjust NH, emissions.
* Prior NH; profiles lower than TES retrieval.
* Optimized NH; profiles increased towards TES retrieval.

e Optimized model still underestimates TES retrievals.
Zhu etal., 2013



Evaluation: model NH; vs AMoN obs

al
AMON: 21 sites with 2-week
long observation, Middle &
April Eastern US

* Slopes are all close to unity.
e R?allincreased.

* In July, the model estimates are
biased high.

e Possible reasons for July bias:

e TES overpass time (1:30 at day
and night) lead interest to
b aos diurnal variability of model
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Implementing diurnal variability for
livestock NH, emissions
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Surface NH, diurnal variability

5 July SEARCH (obs sites locate in SE US)

GC with constant hourly emission
GC with diurnal emission adjusted
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* NH,; decreased at night by several ppb; increased in day up to 1 ppb.

e Monthly average surface NH; (and NO;!) decreased.

e NH; concentration (at TES overpass time 13:30) can be impacted
without changing total emissions.

* Improves TES assimilation results compared to Zhu et al. 2013.



Diurnal variation impact: model NH; vs AMoN obs

No-diurnal Diurnal

AMOoN: 21 sites with 2-
week long observation,
Middle & Eastern US
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Process based treatment of NH, sources

e Bidirectional surface exchange between atmosphere & biosphere is
key part of NH; cycle

 Most current air quality models (e.g., GEOS-Chem) do not account for:

— bi-directional surface fluxes of NH,

— NH,* pool in soil

— diurnal variability of livestock emissions

Surface level NH,

. Atmosphere

e Update GC to include these 3 processes

e Applied to:

e 0.5°x0.667° GEOS-5: April, July, October of 2008

—

|

emission
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Biosphere

* Focus on US domain
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Bi-directional exchange schematic

(Pleim et al., 2013)

Atmosphere
A
Dry dep Emit .
(Wesely, 1989) CF Vegetation
Fertilizati Wet dep (Zhang et al., 2010;
ertilization Massad et al., 2010)
application

(Portter et al., 2010)
n et al., 2013;

it pH from ISRIC)

[NH,*],; reflects instant changes due to fertilization application and

bi-directional exchange.

[NH;] ompensation point FEflECES instant changes of [NH;] in atmosphere,

soil & vegetation.
Overall impact: NH, lifetime will be effectively extended.

References: Cooter et al., 2010; Zhang et al., 2010; Massad et al., 2010; Pleim et al., 2013;
Bash et al., 2013; Hadman et al., 2013; Portter et al., 2010.



NH,; surface concentration
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NH; emission
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BIDI exchange impact: model NH; vs AMoN obs
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AMOoN: 21 sites with 2-week
long observation, Middle &
Eastern US

e BIDI NH; increased
slightly in July, improve
the R% and the slop.

e BIDI NH; decreased in
some sites in April &
October.

 BIDI improvement
depend on locations.



BIDI exchange impact: model NH; vs AMoN obs

Optimized (zhuetal 2013)  Bjdi with optimized emissions
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April inventory in BIDI with
optimized emissions from

Zhu et al 2013.
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GC [g/(yr m2)]

BIDI exchange impact: model NH, vs NTN obs
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NTN: > 200 sites in US, week
long observation

* Bidi NH; not improved the slope.

* Bidi NH; still overestimate in July.



Conclusions

Bi-directional exchange increased the NH; monthly mean
concentration in July through out U.S., decreased in North and
Middle U.S. in April & October.

Spatial distribution differences between the BASE and BIDI are
similar as CMAQ.

Bi-directional exchange’s impact mainly depending on the
locations, will try case studies in fertilizer emission dominated
region (e.g., Central Great Plain, South Texas, California).

Data sources of important parameters (e.g., soil pH, fertilizer
application rate) in bi-directional exchange need to be further
investigated.

Changes to NH; from bi-directional exchange need to be
further resolved with results from top-down constraints (Zhu
et al., 2013).



Thanks !

Liye.Zhu@colorado.edu



Bi-directional exchange schematic
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