Trends in Gypsiferous Aerosol Downwind of White Sands

TX

NÑ

Warren H. White, Krystyna Trzepla, Sinan Yatkin University of California, Davis Thomas E. Gill, Lixin Jin University of Texas, El Paso

Bosque del

Apache

Mountain

White Sands

http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=77294

IMPROVE

Interagency Monitoring of Protected Visual Environments

The U.S. Forest Service has operated a sampler (WHIT) at White Mountain \rightarrow since January 2002.

The U.S. Fish and Wildlife Service has
operated a sampler (BOAP) at
← Bosque del Apache since 2000.

Monthly average concentrations of most major crustal elements correlate well between White Mountain and Bosque del Apache, reflecting the regional character of climate and geological factors.

In recent years a spring pulse of sulfate aerosol has appeared at White Mountain – and not at Bosque del Apache. In recent years this pulse is eclipsing the usual summer peak produced by atmospheric reaction of sulfur dioxide emissions. The sulfate increases have been accompanied by increased concentrations of chloride, calcium and strontium, suggesting a common origin as evaporite minerals.

			Inte	er-s	spe	cie	S C	orr	ela	tior	ns,	r,	in	Wł	nite	e N	lou	nta	ain	ΡN	1 _{2.5}		
2011-2012 elemental data \rightarrow 2011		2011-2	012	AI	Si	к	Ti	Mn	Fe	Rb	Na	Mg	C	Cl	Ca	Sr	v	Cr	Ni	Br	SO4	S	
are from Panalytical Epsilon 5 EDXRF instruments at CNL; ions Cl ⁻ and SO ₄ ⁼ are from ion			AI	1	0.99	0.94	0.98	0.95	0.99	0.75	0.44	0.68	0.61	0.58	0.76	0.58	0.71	0.64	0.61	0.36	0.55	0.52	
			Si	0.99	1	0.95	0.99	0.98	0.99	0.79	0.44	0.69	0.62	0.60	0.79	0.61	0.72	0.62	0.61	0.37	0.55	0.52	
			K	0.94	0.95	1	0.95	0.96	0.96	0.77	0.45	0.72	0.68	0.64	0.83	0.65	0.74	0.58	0.61	0.52	0.62	0.60	
			Ma	0.98	0.99	0.95	1	0.96	1	0.79	0.45	0.67	0.61	0.59	0.78	0.6	0.71	0.61	0.62	0.35	0.55	0.52	
			Fe	0.95	0.90	0.90	1	0.97	1	0.80	0.42	0.05	0.64	0.61	0.8	0.62	0.73	0.63	0.62	0.36	0.55	0.53	
chromatography at RTI.			Rb	0.05	0.79	0.77	0.79	0.80	6 79	1	0.41	0.58	0.56	0.56	0.68	0.57	0.54	0.43	0.43	0.20	0.48	0.44	
			Na	0.44	0.44	0.45	9.4 3	0.42	0.46	0.41	1	0.63	0.64	0.64	0.57	0 66	0.38	0.24	0.16	0.14	0.72	0.62	
			Mg	0.68	0.69	0.72	0.67	0.69	0.7	0.58	0.65	1	0.94	0.92	0.93	0.92	055	0.43	0.32	0.25	0.82	0.75	
	<i>crustal</i> (silicate) factor		Cl	0.61	0.62	0.68	0.61	0.63	0.64	0.56	0.64	0.94	1	0.97	0.91	0.92	0.54	0.35	0.28	0.23	0.78	0.72	
	· · · · · ·		Cl	0.58	0.60	0.64	0.59	0.61	0.61	0.56	0.64	0.92	0.97	1	0.91	0.93	0.51	0.31	0.25	0.18	0.75	0.7	
			Ca	0.76	0.79	0.83	0.78	0.80	0.90	5. Y.S.	0.57	0.93	0.91	0.91	1	0.92	0.6	0.47	0.43	0.33	0.77	0.74	
			Sr	0.58	0.61	0.00	0.6	0.63	0.62	0.57	0.06	0.92	0.92	0.93	0.92	1	0.52	0.32	0.29	0.21	0.77	0.72	
				0.71	0.72	0.74	0.71	0.73	0.72	0.54	0.38	0.05	0.54	0.51	0.03	0.32	1 39	0.39	0.37	0.55	0.58	0.01	
<i>evaporite</i> (gypsiferous) factor			Ni	0.61	0.62	0.61	0.62	0.61	0.62	0.43	0.24	0.32	0.28	0.25	0.43	0.32	0.57	0.33	1	0.37	0.30	0.34	
				0.36	0.37	0.52	0.35	0.40	0.36	0.20	0.14	0.25	0.23	0.18	0.33	0.21	0.55	0.22	0.37	1	0.42	0.49	
			SO4	0.55	0.55	0.62	0.55	0.55	0.56	0.48	0.72	0.82	0.78	0.75	0.77	0.77	0.58	0.30	0.31	0.42	1	0.98	
			S	0.52	0.52	0.60	0.52	0.53	0.54	0.44	0.62	0.75	0.72	0.70	0.74	0.72	0.61	0.29	0.34	0.49	0.98	1	
are from legacy EDXRF systems at \rightarrow [2002-2]			010	AI	Si	К	Ti	Mn	Fe	Rb	Na	Mg	C	Cl	Ca	Sr	V	Cr	Ni	Br	SO4	S	
			AI	1	0.90	0.78	0.90	0.93	0.90	0.81	0.48	0.68	0.53	0.53	0.75	0.6	0.38	0.28	0.11	0.41	0.43	0.47	
			K	0.90	0.88	0.00	0.90	0.92	0.95	0.85	0.02	0.77	0.00	0.08	0.90	0.70	0.28	0.21	0.10	0.41	0.32	0.58	
chromatography at RTI.				0.90	0.90	0.83	1	0.91	0.97	0.87	0.35	0.55	0.46	0.43	0.7	0.51	0.39	0.28	0.15	0.47	0.45	0.47	
				0.93	0.92	0.85	0.91	1	0.93	0.86	0.49	0.71	0.58	0.56	0.81	0.65	0.38	0.26	0.14	0.49	0.48	0.52	
			Fe	0.90	0.95	0.89	0.97	0.93	1	0.91	0.41	0.62	0.53	0.49	0.78	0.59	0.36	0.27	0.15	0.49	0.48	0.51	
			Rb	0.81	0.88	0.85	0.87	0.86	0.91	1	0.37	0.57	0.50	0.46	0.73	0.56	0.34	0.22	0.14	0.49	0.41	0.43	
			Na	0.48	0.62	0.41	0.35	0.49	0.41	0.37	1	0.84	0.80	0.95	0.82	0.89	-0	0	-0	0.06	0.46	0.56	
			Mg	0.68	0.77	0.57	0.55	0.71	0.62	0.57	0.84	1	0.78	0.86	0.90	0.91	0.06	0.12	0.03	0.14	0.47	0.55	
			CI	0.53	0.66	0.53	0.46	0.58	0.53	0.50	0.80	0.78	1	0.86	0.81	0.82	0.05	0.04	0.04	0.13	0.54	0.57	
			0	0.53	0.08	0.48	0.43	0.50	0.49	0.40	0.95	0.80	0.80	1 00	0.88	0.93	0 15	0.02	0.01	0.07	0.5	0.59	
			Sr	0.75	0.76	0.57	0.51	0.65	0.59	0.56	0.82	0.91	0.81	0.88	0.94	1	0.06	0.05	0.07	0.13	0.55	0.6	
			V	0.38	0.28	0.33	0.39	0.38	0.36	0.34	-0	0.06	0.05	0	0.15	0.06	1	0.17	0.47	0.48	0.32	0.29	
			Cr	0.28	0.21	0.19	0.28	0.26	0.27	0.22	0	0.12	0.04	0.02	0.12	0.05	0.17	1	0.27	0.12	0.05	0.05	
									0.45	0.14		0.00								4	(T	0.17	
			Ni	0.11	0.10	0.13	0.15	0.14	0.15	0.14	-0	0.03	0.04	0.01	0.07	0.03	0.47	0.27	1	0.26	0.2	0.17	
			Ni Br	0.11 0.41	0.10 0.41	0.13 0.6	0.15	0.14 0.49	0.15	0.14	-0 0.06	0.03	0.04 0.13	0.01 0.07	0.07	0.03	0.47	0.27 0.12	1 0.26	0.26 1	0.2 0.5	0.17	
			Ni Br SO ₄	0.11 0.41 0.43	0.10 0.41 0.52	0.13 0.6 0.49	0.15 0.47 0.45	0.14 0.49 0.48	0.15 0.49 0.48	0.14 0.49 0.41	-0 0.06 0.46	0.03 0.14 0.47	0.04 0.13 0.54	0.01 0.07 0.5	0.07 0.28 0.55	0.03 0.13 0.51	0.47 0.48 0.32	0.27 0.12 0.05	1 0.26 0.20	0.26 1 0.50	0.2 0.5 1	0.17 0.48 0.98	

low elemental carbon (EC) values to exclude smoke events.

Spring PM_{2.5}; March – May, 2005 - 2012

Spring PM_{2 5}; March – May, 2005 - 2012 + White Mountain × Bosque del Apache 500 50 50 5 $SO_4^{=}$, nmol/m³ Cl⁻, nmol/m³ 0.5 $SO_a^{=} = Ca^* + Sr^*$ Cl⁻ = 2×(Ca*+Sr*) 0.5 0.05 0.2 20 200 0.2 2 200 2 20 $Ca^* + Sr^*$, nmol/m³ $Ca^* + Sr^*$, nmol/m³

Sulfate appears to be the predominant anion associated with fine particles of evaporite Ca and Sr, although some chloride is also evident. A background of secondary ammonium sulfate is also contributed by regional haze. To a first approximation, the total S measured in White Mountain $PM_{2.5}$ can be apportioned as follows (concentrations in ug/m³):

$$\begin{split} S_{regional} &= S_{measured total} - S_{evaporites}, \\ S_{evaporites} &= 32.1[Ca*/40.1 + Sr*/87.6] \\ &= 32.1[(Ca-1.25Fe)/40.1 + (Sr-0.0118Fe)/87.6]. \end{split}$$

■ White Mtn, regional ■ White Mtn, evaporites • Bosque del Apache

According to this reckoning, White Sands evaporites account for

- (a) most of the observed difference between sulfur concentrations at Bosque del Apache and White Mountain, and
- (b) the recent increase observed in springtime sulfur concentrations at White Mountain.

 PM_{10} ($D_{ap} \le 10$ um) samples are routinely collected and weighed at all sites, normally without any chemical analysis. As part of an unrelated operational investigation, a few of these were analyzed by XRF, including some from White Mountain. In contrast to the pattern seen elsewhere, coarse particles at White Mountain often account for more than half the total measured sulfur.

Selected sample days, 2011 - 2012

