Use of passive samplers and surrogate surfaces for measurement of atmospheric Hg at three sites in Florida

> Mae Gustin, Christianna Peterson University of Nevada Peter Weiss-Penzias UC Santa Cruz

Acknowledgements

- EPRI- Arnout ter Shure and Leonard Levin
- State of Florida
- SEARCH Network
- Musheng Alishahi, Casandra Woodward, and Melissa Markee

Talk organization

- Background information
- Overall objectives of this work
- Data collected and methods
- Results
- Conclusions

Why worry about Florida and Hg?

National Atmospheric Deposition Program/Mercury Deposition Network http://nadp.sws.uiuc.edu/lib/data/2010as.pdf

Objectives

- Objective 1 -Investigate the utility of passive sampling systems to record spatial and temporal patterns of atmospheric Hg concentrations and dry deposition (Peterson et al. 2012 Science of the Total Environment)
- Objective 2-Estimate dry deposition (Peterson et al. Science of the Total Environment; Gustin et al. 2012 Atmospheric Chemistry and Physics)
- Objective 3-Determine the sources of GOM to Florida Working hypothesis: Source tracking easier during dry periods (Gustin et al. 2012 Atmospheric Chemistry and Physics)

Two types of passive systems

- <u>Surrogate surfaces potential deposition (ng/m² h)</u>
 - System configured to measured GOM
 - Fine aerosols cannot be ruled out
 - Depends on turbulence
 - Form of GOM will influence uptake
 - Different deposition velocities
- <u>Passive samplers- measure of concentration (pg/hr)</u>
 - GOM and TGM
 - Sampling rate based on Fick's Law
 - Diffusion driven
 - Empirical sampling rate developed to compare with theoretical to see how well they are working

Hg Samplers at OLF, near Pensacola

Why passive systems?

- Broadly and easily deployed
- Capture trends in concentrations and deposition simultaneously
- Do not require electricity
- Can be deployed with minimal technical training
- Configured so that little inadvertent contamination occurs with deployment and shipment

Overview of Tekran measured concentrations

Mean annual GEM: OLF: 1.2 ng m⁻³ TPA: 1.3 ng m⁻³ DVE: 1.4 ng m⁻³

Mean annual GOM: OLF: 2 pg m⁻³ TPA: 3 pg m⁻³ DVE: 6 pg m⁻³

Mean annual PHg: OLF: 3 pg m⁻³ TPA: 2 pg m⁻³ DVE: 2 pg m⁻³

Objective 3: Assessing sources

- Tools used
 - Tekran data
 - Criteria air pollutant data
 - Analyses of meso- and synoptic- scale air movement
 - Chemistry and back trajectories for events
 - Passive sampler and surrogate surface data

Seasonal Diel Tekran Hg – DVE, OLF, TPA

Gustin et al. submitted

Objective 3. Criteria Air Pollutants– DVE, OLF, TPA

Seasonal wind direction information

180

72 hour trajectory analyses

Class 1 > 97 percentile GOM peak SO2> mean of peak Wind direction from EGP power plant

Class 2 > 97% GOM peak SO2 < mean Wind direction NOT from power plant

Seasonal variation

Highest concentrations Tekran and PS at DVE

Highest deposition measured at TPA

Seasonal variation

Objective 3.

Conclusions

- Objective 3-Determine the sources of GOM to Florida Working hypothesis: Source tracking easier during dry periods
 - Natural background dry deposition 0.03 ng m⁻² h⁻¹
 - Higher values in winter and fall due to mobile sources
 - 0.10 ng m⁻² h⁻¹ at TPA and DVE
 - 0.03 ng m⁻² h⁻¹ at OLF
 - Long range transport spring at all sites
 - 0.8 ng m² h⁻¹
 - Local electricity generating plants DVE
 - ~ 0.10 ng m² h⁻¹ directly or indirectly