Developing Nitrogen Criteria for Sierra Nevada Lakes

NADP Annual Meeting and Scientific Symposium October 3-4, 2012 Andi Heard and Dr. James Sickman

Acknowledgements

<u>UCR</u>

Dr. James Sickman Dr. Michael Anderson Dr. David Parker Dr. Louis Santiago Dr. William Walton Dr. Edith Allen

Funding:

National Park Service

USDA Forest Service

Field Support (NPS, UCR, USFS)

Dee Lucero Linda Mutch Amanda James Annie Esperanza Lyndsay Belt Pete Homyak Paul Koster Dena Paolilli Joy McCullough Sandy Graban Scott Reynolds Ari Sarzotti Kristy Richardson Josh Baccai Paul Sternberg Heather Verkamp-Tobin Will Vicars Alice Heard Marcus James Scott Roberts Alice Chung-MacCoubrey Tracy Weddle Lorenzo Moreno and Trail Crew Thomas Martin **Rich Thiel NPS** Packers

Need for Nitrogen Criteria

- Air pollution stressor of high concern in the central and southern Sierra. Increased nitrogen deposition is of particular concern with respect to Sierra Nevada lakes.
- 2. Sierra Nevada lakes are sensitive to environmental change (highly oligotrophic).
- 3. Land management agencies are tasked with protecting these ecosystems from stressors that originate outside of protected boundaries and affect resources at landscape scales.
- Criteria based on measurable ecological effects is an approach managers can take to assess status of resources and communicate it to a broader audience. This approach may be used to influence environmental policy and is an important step towards long-term protection of high-elevation lakes.

Research Objectives

- I. Establish nutrient criteria using *in situ* bioassay experiments and phytoplankton growth modeling
- II. Apply results from phytoplankton modeling to survey and monitoring data to assess status and trend of lake ecosystems
- III. Validate nutrient criteria to assess how broadly it can be applied, how effective a tool it is at identifying lakes affected by anthropogenic nitrogen inputs, and what complexities should be considered when assessing status and trends of nutrient affected lakes

Sierra Nevada – Study Area

Map by: NPS

Moat Toiyabe National Forest – east slope

Topaz Sequoia National Park – west slope

Emerald Sequoia National Park – west slope

<u>Aster</u> Sequoia National Park – west slope

Experiments: 2 Scales

- Corral Volume ~ 200 liters
- 16 corrals per site 2 controls

- Cubie Volume ~ 8 liters
- 16 cubies per site 2 controls

Methods

<u>Nutrient gradient</u>

- N Range limnocorrals: 0.500 50.0 µmol/l
- N Range cubies: 0.100 15.0 µmol/l
- N + P experiments: Spiked all cubies with a constant [P]
- Phytoplankton response measure
 - Chlorophyll a
 - Limnocorrals: extractable Chla (lab)
 - Cubitainers: in situ (fluorometer)

Phytoplankton growth models:

- Monod
- Dose response curves

Measuring Chla in the field

Chla Results

Moat: Monod Model

Moat: Dose Response Curve

Emerald

Criteria Estimates

Experiment	Month	10% Dose μM	50% Dose μM	90% Dose μM
Moat - limnocorrals	July	0.44 (0.60)	1.1 (0.67)	2.6 (2.2)
Moat - limnocorrals	September	0.89 (3.9)	4.0 (7.5)	18 (28)
Moat - cubies	September	0.23 (0.44)	0.67 (0.69)	2.0 (0.17)
Emerald - cubies	September	0.32 (0.34)	1.2 (0.84)	4.7 (6.3)

Application of Criteria

Yosemite

Sequoia & Kings Canyon

Criteria Example

Preliminary Criteria Estimates

10, 50, and 90% dose estimates for nitrate and % Park lakes exceeding dose estimates

	10% Dose µM N	% Exceeded	50% Dose µM N	% Exceeded	90% Dose µM N	% Exceeded
High	0.89	28 (7.6)	4.0	18 (7.0)	18	0
Low	0.33	37 (8.0)	1.0	29 (7.6)	3.1	21 (7.6)

- High estimates: Moat Sept (limnocorrals)
- Low estimates: Moat July (limnocorrals), Moat Sept (cubies), Emerald Sept (cubies)

- 1. I have developed preliminary nutrient criteria for N and applied to monitoring data
- 2. Results suggest dose response models are a viable approach to developing nutrient criteria. However, the estimates would benefit from more experiments and increased sample size as phytoplankton response is highly variable.
- 3. Next steps: Apply refined criteria to existing synoptic surveys:
 - Western Lakes Survey 1985 (Eilers et al. 1989)
 - Western Lakes resurvey 1999 (Clow et al. 2002)
 - National Park Service monitoring data: 2008 2011
- 4. Look at changes in criteria exceedence and shifts in nutrient limitation over-time
- 5. Spatial analyses to determine variables that help explain nutrient affected lakes.

Questions...