Development of the Next Generation of Flux-Measurement Tools

Berkeley B. Almand, Michael P. Hannigan, Nicolas B. Masson, Ricardo A. Piedrahita, Gregory Miller, Allison Moore, Kevin Klinkel, Alex Demarias

Mechanical Engineering Department, University of Colorado

John Ortega

Atmospheric Chemistry Division, National Center for Atmospheric Research

Eladio M. Knipping

Electric Power Research Institute

Dry Deposition is an important contributor to acidification

- The EPA is considering changing future secondary National Ambient Air Quality Standards (NAAQS) for $SO₂$ and NO₂ based on acidification
- SO₂ dry deposition accounts for up to 50% of total sulfur deposition
- Dry deposition accounts for up to 40% of total nitrogen deposition
- There is a lot of uncertainty regarding dry deposition measurements and modeling

Flux-measurement methods are costly or indirect

Inferential Method:

Advantages: Advantages:

- besect the assive than teddy
- Most accurate method available covariance
- Less technically difficult

Disadvantages: Disadvantages:

- Easeh ମାଧ୍ୟରଙ୍କର () Biggon't always
- Technically difficult and agree with direct measurements, or
- computationally expensive other models
- Flux estimates between models can vary by a factor of 2 to 3

Pape et al. demonstrated that flux chambers are an accurate tool for measuring dry deposition

- Dynamic flux chambers were used in combination with traditional pollutant monitors
- Measured $CO₂$ and methanol surface flux over grassland
- Demonstrated good agreement with eddy covariance systems

Dynamic Flux Chambers could provide direct dry-deposition measurements

Chamber outlet houses sensors and flow controls

Dry deposition flux is calculated via a mass balance

$$
C(t) = \frac{QC_{\text{out}}}{Q - v_{\text{d}}A_{\text{s}}} + (C_{\text{out}} - \frac{QC_{\text{out}}}{Q - v_{\text{d}}A_{\text{s}}})e^{\frac{-(Q - v_{\text{d}}A_{\text{s}})t}{V}}
$$

Inexpensive sensors enable low-cost measurements

CO2 Sensor

- Non-dispersive infrared
- Costs about \$60
- Detection range of 0-5000 ppm
- 30 ppm resolution

Concerns

Sensitive to temperature

Inexpensive sensors enable low-cost measurements

NO₂ Sensor

- Electrochemical Sensor
- Costs about \$80
- Detection range of 0-20,000 ppb
- < 20 ppb resolution

Concerns

- Sensor resolution (ideally 1 ppb)
- NO emissions react with $O₃$ and rapidly produce $NO₂$. This can diminish the magnitude of $NO₂$ deposition reading

SO2 Sensor

- Electrochemical Sensor
- Costs about \$80
- Detection range of 0-50,000 ppb
- < 100 ppb resolution

Concerns

- Sensor resolution (ideally 1 ppb)
- SO₂ levels in the western US are low, so $SO₂$ deposition will be very difficult to measure

Summary & Future Plans

- We developed a flux chamber that measures $CO₂$, $O₃$ RH, temperature, rainfall, and soil moisture.
- The crux of our project is finding inexpensive ways to take high-resolution $NO₂$ and $SO₂$ measurements.
- We will develop electronics and install the NO₂ and $SO₂$ sensors. We will also install high-resolution NO₂ measurement devices, which will enable us to calibrate and evaluate the inexpensive sensors.
- We will perform calibrations to explore the effects of temperature, RH, and cross-sensitivity on the $O₃$ sensors.
- We will compare our flux-chamber results to an eddy-covariance system.

Questions?

Contact Information: Berkeley Almand, Mechanical Engineering Department, University of Colorado, berkeley.almand@colorado.edu

References

EPA, *Policy Assessment for the Review of the Secondary NAAQS for Oxides of Nitrogen and Oxides of Sulfur,* United States Environmental Protection Agency, 2011.

Burba, G; Anderson, D*. A Brief Practical Guide to Eddy Covariance Flux Measurements,* Version 1.0.1; Licor, Inc.: Lincoln, 2005.

Driscoll, C.T.; Lawence, G.B.; Bulger, A.J.; Butler, T.J.; Cronan, C.S.; Eagar, C.; Lambert, K.F.; Likens, G.E.; Stoddard, J.L.; Weathers, K.C. Acidic Deposition in the Northeastern United States: Sources and Inputs, Ecosy

Clean Air Status and Trends Network; *2010 Annual Report*; U.S. Environmental Protection Agency: Washington, DC, 2010.

Seinfeld, John H. ; Pandis, Spyros N. *Atmospheric Chemistry and Physics - From Air Pollution to Climate Change,* 2nd ed.; John Wiley and Sons: Hoboken, 2006.

Turnipseed, A.A; Burns, S.P.; Moore, D.J.P.; Hu, J.; Guenther, A.B.; Monson, R.K. Controls over ozone deposition to a high elevation subalpine forest.
Agricultural and Forest Meteorology. 2009, 149, 1447-1459.

Baldocchi, D. D.; Hincks, B. B.; Meyers, T. P. Measuring Biosphere-Atmosphere Exchanges of Biologically Related Gases with Micrometeorological Methods. *Ecology.* **1988,** *69*, 1331-1340.

Schwede, D.; Zhang, L.; Vet, R.; Lear, G. An intercomparison of the deposition models used in CASTnet and CAPMoN networks. *Atmospheric Environment.* **2011,** *45*, 1337-1346.

Wesely, M. L.; Hicks, B. B. A review of the current status of knowledge on dry deposition. *Atmospheric Environment.* **2000,** *34*, 2261-2282.

Zhang, L.; Brook, J. R.; Vet, R. A revised parameterization for gaseous dry deposition in air-quality models. *Atmos. Chem. Phys.* **2003,** *3*, 2067-2082.

Pape, L.; Ammann, C.; Nyfeler-Brunner, A.; Spirig, C.; Hens, K.; Meixner, F.X. An automated dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases of grassland ecosystems. Biogeosc

Jiang, Y.; Li, K.; Tian, L.; Piedrahita, R.; Yun, X.; Mansata, O.; Lv, Q.; Dick R.P.; Hannigan, M.P.; Shang, Li. *Papers and Notes,* 13th International Conference
on Ubiquitous Computing, Beijing, China, September 17-21, 2

Myles, L.; Heuer, M.W.; Meyers, T.P.; Hoyett, Z.J. A comparison of observed and parameterized SO₂ dry deposition over a grassy clearing in Duke Forest.
Atmospheric Environment. **2012,** *49,* 212-218.

Wu, Z.; Wang, X.; Chen, F.; Turnipseed, A.A.; Guenther, A.B.; Niyogi, D.; Charusombat, U.; Xia, B.; Munger, J.W.; Alapaty, K. Evaluating the calculated dry
deposition velocities of reactive nitrogen oxides and ozone from t

D. Vaugn et al., *Characterization of Low-Cost NO2 Sensors;* Sonoma Technology, Inc., 2010.

Non-dispersive infrared radiation (NDIR)

- NDIR: Infrared light is directed through a sample chamber toward a detector.
- Each gas absorbs infrared radiation at a different wavelength ($CO₂$ absorbs 4.26μm).
- Concentration (density) can be calculated from measured voltage and optical path length.

[2] Environment Leading Technology Website, http://tccelt.co.kr/

Electrochemical Sensors

• Measure concentration by oxidizing or reducing gas and measuring current.

Advantages:

- Output is linearly proportional to concentration
- Stable over time (less re-calibration)

Disadvantages:

• Cross-sensitive

Relative contributions of N_r species to total inorganic N dry deposition

*Negative percentages for NH3 denote net NH3 emissions, which are expressed relative to the sum of dry deposition fluxes for the other four Nr species.
Flechard et al. (2011)

Chemiluminescence

Nitrogen Chemistry