Development of the Next Generation of Flux-Measurement Tools

Berkeley B. Almand, Michael P. Hannigan, Nicolas B. Masson, Ricardo A. Piedrahita, Gregory Miller, Allison Moore, Kevin Klinkel, Alex Demarias

Mechanical Engineering Department, University of Colorado

John Ortega

Atmospheric Chemistry Division, National Center for Atmospheric Research

Eladio M. Knipping

Electric Power Research Institute

Dry Deposition is an important contributor to acidification

- The EPA is considering changing future secondary National Ambient Air Quality Standards (NAAQS) for SO₂ and NO₂ based on acidification
- SO₂ dry deposition accounts for up to 50% of total sulfur deposition
- Dry deposition accounts for up to 40% of total nitrogen deposition
- There is a lot of uncertainty regarding dry deposition measurements and modeling

Flux-measurement methods are costly or indirect

Inferential Method:

Advantages:

- basecexpensive thanteddy
- covariance Most accurate method available Less technically difficult

Disadvantages:

- Essed grange of toto on't always
- agree with direct measurements, or lechnically difficult and
- other models computationally expensive Flux estimates between models can
- vary by a factor of 2 to 3

Burba (2005)

Pape et al. demonstrated that flux chambers are an accurate tool for measuring dry deposition

- Dynamic flux chambers were used in combination with traditional pollutant monitors
- Measured CO₂ and methanol surface flux over grassland
- Demonstrated good agreement with eddy covariance systems

Dynamic Flux Chambers could provide direct dry-deposition measurements

Chamber outlet houses sensors and flow controls

Dry deposition flux is calculated via a mass balance

$$C(t) = \frac{QC_{\text{out}}}{Q - v_{\text{d}}A_{\text{s}}} + (C_{\text{out}} - \frac{QC_{\text{out}}}{Q - v_{\text{d}}A_{\text{s}}})e^{\frac{-(Q - v_{\text{d}}A_{\text{s}})t}{V}}$$

Inexpensive sensors enable low-cost measurements

CO₂ Sensor

- Non-dispersive infrared
- Costs about \$60
- Detection range of 0-5000 ppm
- 30 ppm resolution

Concerns

• Sensitive to temperature

Inexpensive sensors enable low-cost measurements

NO₂ Sensor

- Electrochemical Sensor
- Costs about \$80
- Detection range of 0-20,000 ppb
- < 20 ppb resolution

Concerns

- Sensor resolution (ideally 1 ppb)
- NO emissions react with O₃ and rapidly produce NO₂. This can diminish the magnitude of NO₂ deposition reading

SO₂ Sensor

- Electrochemical Sensor
- Costs about \$80
- Detection range of 0-50,000 ppb
- < 100 ppb resolution

Concerns

- Sensor resolution (ideally 1 ppb)
- SO₂ levels in the western US are low, so SO₂ deposition will be very difficult to measure

Summary & Future Plans

- We developed a flux chamber that measures CO₂, O₃, RH, temperature, rainfall, and soil moisture.
- The crux of our project is finding inexpensive ways to take high-resolution NO₂ and SO₂ measurements.
- We will develop electronics and install the NO₂ and SO₂ sensors. We will also install high-resolution NO₂ measurement devices, which will enable us to calibrate and evaluate the inexpensive sensors.
- We will perform calibrations to explore the effects of temperature, RH, and cross-sensitivity on the O₃ sensors.
- We will compare our flux-chamber results to an eddy-covariance system.

Questions?

<u>Contact Information</u>: Berkeley Almand, Mechanical Engineering Department, University of Colorado, berkeley.almand@colorado.edu

References

EPA, Policy Assessment for the Review of the Secondary NAAQS for Oxides of Nitrogen and Oxides of Sulfur, United States Environmental Protection Agency, 2011.

Burba, G; Anderson, D. A Brief Practical Guide to Eddy Covariance Flux Measurements, Version 1.0.1; Licor, Inc.: Lincoln, 2005.

Driscoll, C.T.; Lawence, G.B.; Bulger, A.J.; Butler, T.J.; Cronan, C.S.; Eagar, C.; Lambert, K.F.; Likens, G.E.; Stoddard, J.L.; Weathers, K.C. Acidic Deposition in the Northeastern United States: Sources and Inputs, Ecosystem Effects, and Management Strategies. *Bioscience*. **2001**, *51*, 180-198.

Clean Air Status and Trends Network; 2010 Annual Report; U.S. Environmental Protection Agency: Washington, DC, 2010.

Seinfeld, John H.; Pandis, Spyros N. Atmospheric Chemistry and Physics - From Air Pollution to Climate Change, 2nd ed.; John Wiley and Sons: Hoboken, 2006.

Turnipseed, A.A; Burns, S.P.; Moore, D.J.P.; Hu, J.; Guenther, A.B.; Monson, R.K. Controls over ozone deposition to a high elevation subalpine forest. Agricultural and Forest Meteorology. 2009, 149, 1447-1459.

Baldocchi, D. D.; Hincks, B. B.; Meyers, T. P. Measuring Biosphere-Atmosphere Exchanges of Biologically Related Gases with Micrometeorological Methods. *Ecology.* **1988**, *69*, 1331-1340.

Schwede, D.; Zhang, L.; Vet, R.; Lear, G. An intercomparison of the deposition models used in CASTnet and CAPMoN networks. *Atmospheric Environment*. **2011**, *45*, 1337-1346.

Wesely, M. L.; Hicks, B. B. A review of the current status of knowledge on dry deposition. *Atmospheric Environment*. **2000**, *34*, 2261-2282.

Zhang, L.; Brook, J. R.; Vet, R. A revised parameterization for gaseous dry deposition in air-quality models. *Atmos. Chem. Phys.* 2003, *3*, 2067-2082.

Pape, L.; Ammann, C.; Nyfeler-Brunner, A.; Spirig, C.; Hens, K.; Meixner, F.X. An automated dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases of grassland ecosystems. *Biogeosciences Discuss.* **2008**, *5*, 3157-3219.

Jiang, Y.; Li, K.; Tian, L.; Piedrahita, R.; Yun, X.; Mansata, O.; Lv, Q.; Dick R.P.; Hannigan, M.P.; Shang, Li. *Papers and Notes*, 13th International Conference on Ubiquitous Computing, Beijing, China, September 17-21, 2011.

Myles, L.; Heuer, M.W.; Meyers, T.P.; Hoyett, Z.J. A comparison of observed and parameterized SO₂ dry deposition over a grassy clearing in Duke Forest. *Atmospheric Environment*. **2012**, *49*, 212-218.

Wu, Z.; Wang, X.; Chen, F.; Turnipseed, A.A.; Guenther, A.B.; Niyogi, D.; Charusombat, U.; Xia, B.; Munger, J.W.; Alapaty, K. Evaluating the calculated dry deposition velocities of reactive hitrogen oxides and ozone from two community models over a temperate deciduous forest. *Atmospheric Environment*. **2011**, *45*, 2663-2674.

D. Vaugn et al., *Characterization of Low-Cost NO*₂ Sensors; Sonoma Technology, Inc., 2010.

Non-dispersive infrared radiation (NDIR)

- NDIR: Infrared light is directed through a sample chamber toward a detector.
- Each gas absorbs infrared radiation at a different wavelength (CO₂ absorbs 4.26μm).
- Concentration (density) can be calculated from measured voltage and optical path length.

[2] Environment Leading Technology Website, http://tccelt.co.kr/

Electrochemical Sensors

• Measure concentration by oxidizing or reducing gas and measuring current.

Advantages:

- Output is linearly proportional to concentration
- Stable over time (less re-calibration)

Disadvantages:

Cross-sensitive

Relative contributions of N_r species to total inorganic N dry deposition

*Negative percentages for NH3 denote net NH3 emissions, which are expressed relative to the sum of dry deposition fluxes for the other four Nr species.

Flechard et al. (2011)

Chemiluminescence

Nitrogen Chemistry