Ammonia emissions from hog farrowto-wean waste lagoons

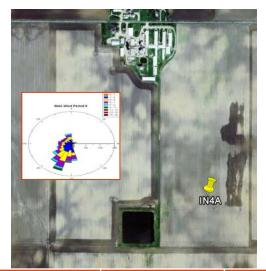
Grant, R.H¹., M.T. Boehm¹, A.J. Lawrence², A. J. Heber³, B.W. Bogan³ and J.C. Ramirez-Dorronsoro⁴. Departments of Agronomy¹ and Agricultural and Biological Engineering³, Purdue University, Isabella Thoburn College², India, and Natural Resources and Environmental Management⁴, Ball State University

Introduction

- This study part of a national study to evaluate emissions from concentrated livestock feeding operation over a range of climates and for an extended period (2 years)
- <u>Ammonia</u> a major reactive nitrogen species influencing secondary aerosol formation and ecosystem health and reportable under the Emergency Planning and Community Right-to-Know Act (**EPCRA**).
- Here look at what influence anaerobic lagoon loading, temperatures and winds have on NH₃ emissions from sow <u>breed to</u> <u>wean</u> hog operation across a range of climates.

Introduction

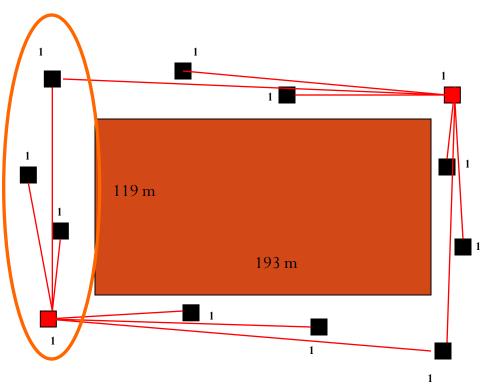
• Hog operations : sows take 16 weeks to birth, piglets take 2-3 weeks to wean


Farm population	ОК	IN	NC
Sows	2784	1400	2000
Piglets	3898	1960	2800
AU (1AU=500 kg)	1279 AU)	624 AU	815 AU

•	Manure transfer	ОК	IN	NC
	Collection	Pull-plug recharge	Deep pit	Pull-plug recharge
	Transfer into lagoon	Daily	Every 2 weeks	Every week
	Removal from lagoon during study	No events	17 events	14 events

Measurement locations

OK IN NC



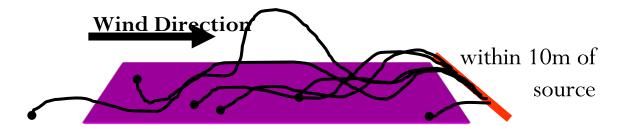
100	Measurements (d)	ОК	IN	NC
	On-site NH3 measurements	181	303	131
	Valid NH3 emissions	87.4	90.5	48.7
	Fraction valid	48%	30%	37%

NH₃ Measurements

TDLAS reflector

TDLAS/scanner

Other Measurements


- Atmospheric properties
 - Turbulence (16Hz)
 - Air temperature, humidity, barometric pressure, surface wetness, solar radiation

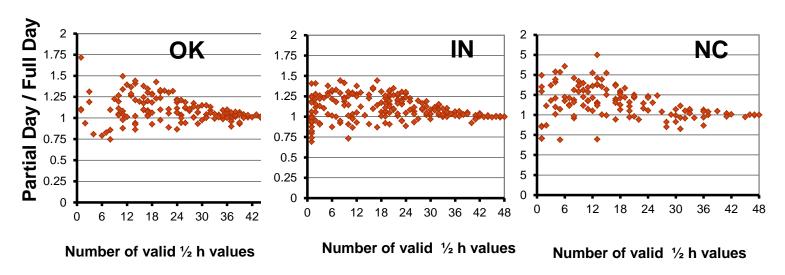
- <u>Lagoon properties</u>
 temperature, pH, redox potential
- Collected operation and production records from producer

NH₃ emissions by bLS (WindTrax)

Turbulence measured on berm (2.5 m)

NH₃ measured on m=12 optical paths giving 12 PICs (1 m)

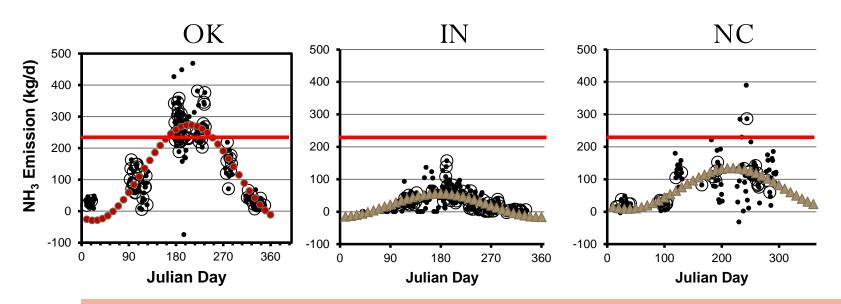
$$a_{i} = \frac{(PIC_{i} / path_{i} - C_{bkgr})}{\left[C_{sim} / Q_{sim}\right]}$$


$$with \ C_{bkgr} \ and \ Q \ solved \ from:$$

$$Q = \left(PIC_{i} / path_{i} - C_{bkgr}\right) / a_{i}$$

$$Q = \left(PIC_{m} / path_{m} - C_{bkgr}\right) / a_{m}$$

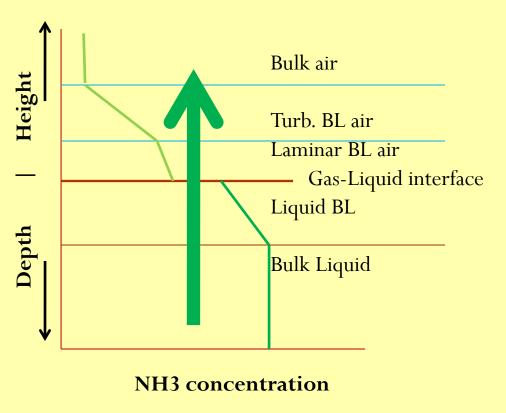
Emissions calculated on ½ intervals


Defining daily emission measurements

Daytime emissions higher than nighttime, but only 52% of typical day needs to be measured to represent the daily emissions to within 25%

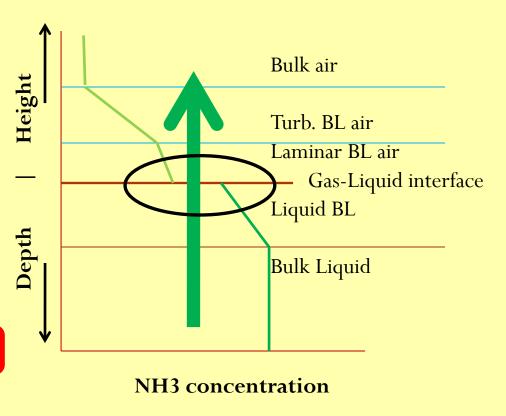
Measurements (d)	ОК	IN	NC
Valid NH3 emissions	87.4	90.5	48.7
Valid day NH3 emissions	83	76	16

Annual pattern of daily emissions



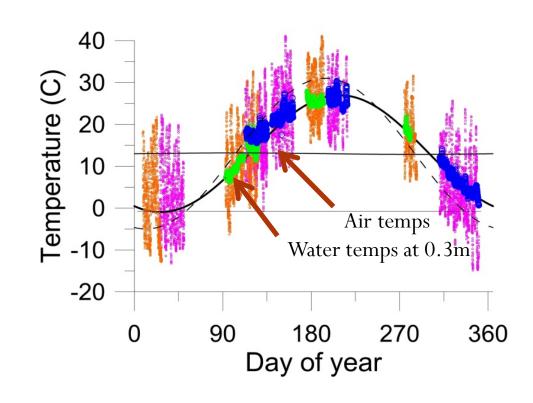
- Large circles indicate valid daily emission
- Emissions trends generally under EPCRA reporting (220 kg/d)

NH3 Emissions: Two film theory

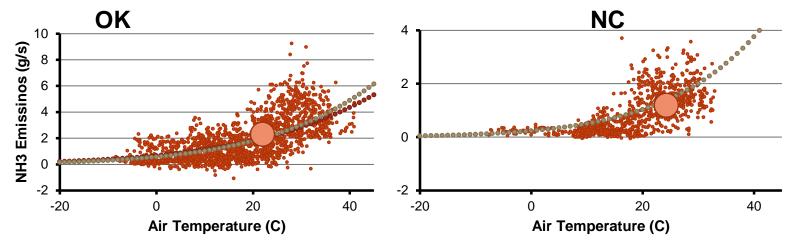

- Emission depends on
 - Bulk [NH₃] of lagoon
 - Liquid diffusion properties
 - NH₃ solubility properties
 - Air flow/transport properties

NH3 Emissions: Two film theory

- Emission depends on
 - Bulk [NH₃] of lagoon
 - Liquid diffusion properties
 - NH₃ solubility properties
 - Air flow/transport properties

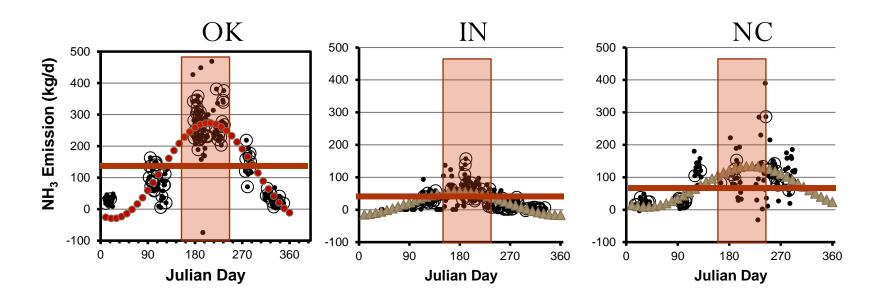


Influence of solubility on emissions


Solubility of NH₃ influenced by Van't Hoff equation:

$$e^{-B\left(\frac{1}{T_{air}}-\frac{1}{298}\right)}$$

Proxy of air for water temperature at interface


Influence of solubility on emissions

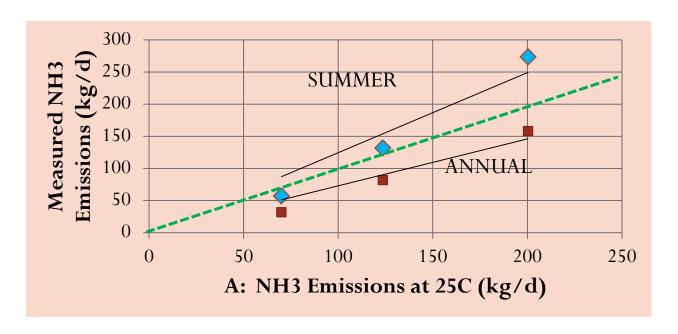
- Proxy of air temperature for water temperature at interface overstates variability
- Narrow range of emissions and temperature at NC limits accuracy of exponent coeff.

	$Ae^{-B\left(\frac{1}{T_{air}}-\frac{1}{298}\right)}$					
	A (g/s)	A (kg/d)	В	\mathbb{R}^2		
OK	2.32	200.4	-4594	0.55		
IN	0.81	70.0	-4932	0.41		
NC	1.43	123.6	-5944	0.31		
Henry's Law			-4200			

Annual pattern of daily emissions

- Mean annual daily emissions
- Maximum mean daily emissions: Mean summer emissions

Annual and Summer emissions

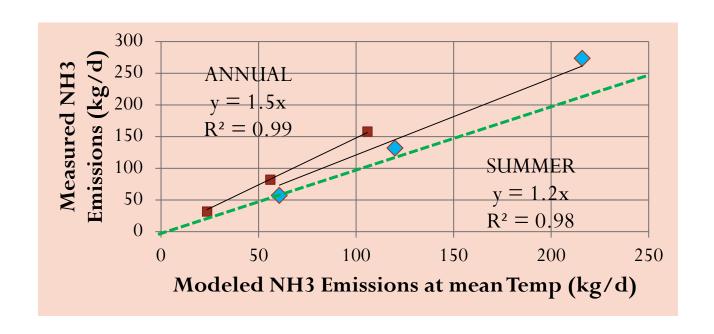

Daily Emission	ОК	IN	NC	OK summer	IN summer	NC summer
$Kg d^{-1}$ (T=25C)	200	70	124	200	70	124
Kg d ⁻¹	158	32	82	273	57	132
Mean air temp. (C)	13	6.5	13.5	26.3	22.3	24.4

$$Ae^{-B\left(\frac{1}{T_{air}}-\frac{1}{298}\right)}$$

Normalized emissions to 25C indicates strength of source and efficiency of $Ae^{-B\left(\frac{1}{T_{air}} - \frac{1}{298}\right)}$ transport and excludes temperature influence:

A= source strength &transport measure.

Annual and Summer emissions



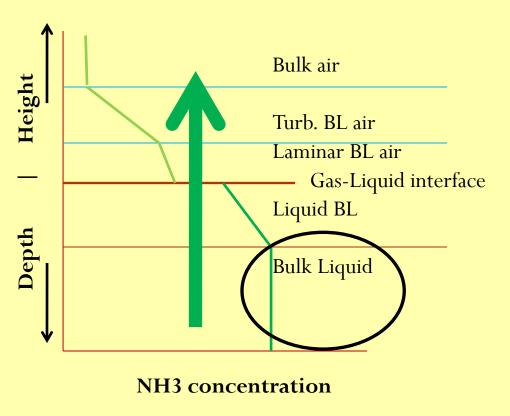
$$Ae^{-B\left(\frac{1}{298}-\frac{1}{298}\right)}$$

High correlation between source strength/transport and mean emissions

• Rate of volatilization/dissociation a controlling factor in emissions

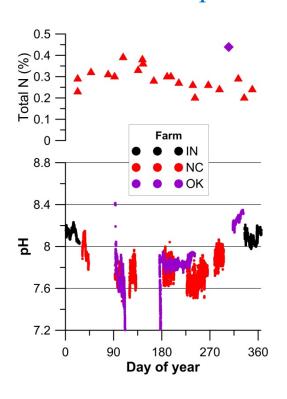
Annual and Summer emissions

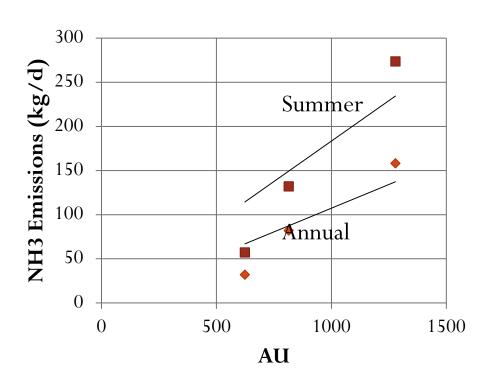
$$Ae^{-B\left(\frac{1}{T_{air}}-\frac{1}{298}\right)}$$


<u>Using mean Temp.</u> as only variate:

- Summer emissions overestimated by <1%
- Annual emissions underestimated by 50%

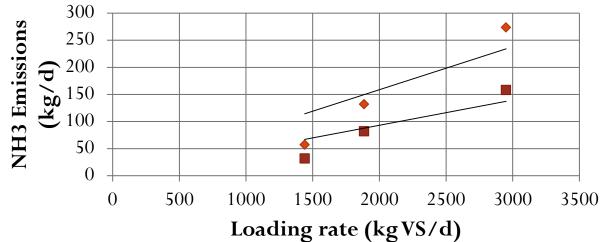
NH3 Emissions: Two film theory




- Emission depends on
 - Bulk [NH₃] of lagoon
 - Liquid diffusion properties
 - NH₃ solubility properties
 - Air flow/transport properties

Lagoon composition

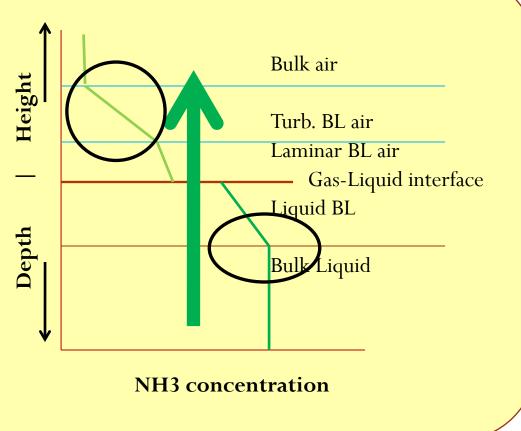
- Bulk lagoon chemical composition info very limited
- Emissions correlated (R²=0.79) with AU (1AU=500kg), and hence waste production



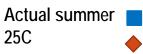
Lagoon composition

Estimated Volatile Solids (VS) Loading

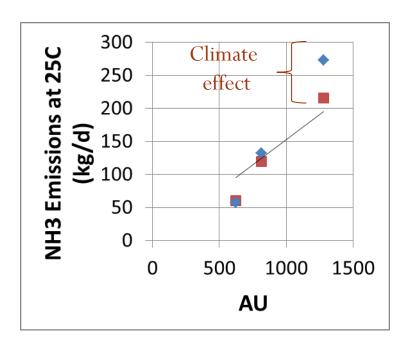
Modelled Daily Emission	OK	IN	NC	OK summer	IN summer	NC summer
Kg d ⁻¹	157	52	70	229	65	111
mg kg VS ⁻¹	53	36	37	78	45	59
MWPS	2950	1440	1886	2950	1440	1886
Loading rate (kg VS d ⁻¹)	SU	300 T				•


$$R^2 = 0.79$$

NH3 Emissions: Two film theory



- Emission depends on
 - Bulk [NH₃] of lagoon
 - Liquid diffusion properties
 - NH₃ solubility properties
 - Air flow/transport properties


Climate effects on transport

Assume summer emissions is maximum

• Climate effects include vapor pressure deficit, winds

Climate during study	ОК	IN	NC
Mean Daily Max Temp. (C)	37	28	32
Mean VPD (kPa)	1.8	0.9	0.6
Mean wind speed (m/s)	4.4	2.7	1.6

Conclusions

- Annual emissions can be modeled using solubility temperature influence function (~50% of variance)
- NH3 emissions are highly correlated with AU, estimated VS loading
- Climate effects (high VPD, winds) at OK enhance emissions

Acknowledgements

Thanks for those contributing to measurements:

- Technicians: Jenafer Wolf, Ben Evans, Scott Cortus, Chris Fullerton
- Undergraduates: Hans Schmitz, Derrick Snyder

Research was funded by livestock producers and the Agricultural Air Research Council, Inc.

