Utilizing the nitrogen isotopic composition of ammonia to investigate regional transport of ammonia emissions: δ^{15} N-NH₃ values at AMoN sites

J. David Felix¹, Emily M. Elliott², David Gay³

Ammonia (NH₃) emissions are largely unregulated in the U.S. although wet and dry atmospheric deposition of NH_3 and ammonium (NH_4^+) can be a substantial source of nitrogen pollution to sensitive terrestrial, aquatic, and marine ecosystems. Despite the adverse effects of excess NH₃ and NH₄⁺ deposition (e.g. eutrophication of surface waters, decreased biodiversity, and increased soil acidity), until recently, gaseous NH3 concentrations were not routinely measured as part of the suite of NADP networks. The Ammonia Monitoring Network (AMoN), established in 2007, has rapidly grown to 55 Here, to supplement studies that trace NH3 across local landscapes (e.g. sites. conventionally managed cornfields, confined animal feeding operations, dairy operations), we deployed NH₃ passive samplers at 9 AMoN sites to assess the isotopic composition of NH₃ (δ^{15} N-NH₃) as a regional tracer of NH₃ emission sources. Monthly NH₃ samples from 9 sites were analyzed for nitrogen isotopic composition over a period of a year (7/09 to 6/10). Our results suggest that isotopic compositions of NH₃ at individual AMoN sites generally corresponds with primary regional NH₃ sources. To further explore these spatial patterns, we couple an inventory of the δ^{15} N-NH₃ values of NH₃ sources with county-level NH₃ emission inventory (Davidson et al. 2002) to model the average monthly δ^{15} N-NH₃ values occurring in U.S. counties. These modeled isotopic compositions are then compared to observed δ^{15} N-NH₃ values occurring at individual AMoN sites. This comparison provided insight into possible inaccuracies in the NH₃ inventory and the lack of the modeled isotopic compositions to account for transport of NH₃ sources. These results demonstrate how the nitrogen isotopic composition of NH₃ can be utilized to investigate the source, transport, and fate of NH₃ emissions across varying spatial scales.

^{1.} J. David Felix (*corresponding author), jdf47@pitt.edu, 412 624 8780, Department of Geology and Planetary Science, University of Pittsburgh, 4107 O'Hara St, Pittsburgh, PA 15260

^{2.} Emily M. Elliott, <u>eelliott@pitt.edu</u>, Department of Geology and Planetary Science, University of Pittsburgh, 4107 O'Hara St, Pittsburgh, PA 15260

^{3.} David Gay, NADP, dgay@illinois.edu 2204 Griffith Drive Champaign, IL 61820-7495

⁴⁵