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Qualitative

Quantitative

Source Apportionment Strategy
(Weight of Evidence)

 Multiple approaches building from simple to
complex. Reconciliation of differences
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— Concentration gradients.
— Which way is the wind coming from?
— Simple back trajectories.

— Frequency with which the air mass passes over source
areas before it arrives at the receptor - residence time
analyses.

— Trajectory receptor models.

— Other receptor models.

— Chemical transport model (CAMXx).
— Hybrid Models.



ROMANS | & || Meteorological Goals

Generate a meteorological data set suitable for chemical
transport modeling, trajectory analyses, and formation of
a conceptual model of source-receptor relationships.

Generate accurate wind fields for accurate source
apportionment.

Generate accurate moisture, cloud, and precipitation
fields for chemistry and deposition calculations.

Evaluate suitability of coarse-domain meteorological data
for simple source apportionment like back trajectories and
for use in historical analyses.



Known Meteorological Issues

Complex Terrain = complex meteorology & small scale inhomogeneity

e Complex diurnal and
seasonal mountain
circulation patterns

* |nversions & stagnhation
in valleys

* Orographic Precipitation , SN
& isolated convective
storms

e Fewer observations in
remote mountainous
areas



Meteorology Monitoring Locations - ROMANS Study
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Total Precip (mm)

Total Precipitation by Month during 1995-2009 Total Precipitation by Hour during 1995-2009
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WRF Mesoscale Meteorological Modeling

Domain 1
36 km, 165 x 129
(WRAP™ Domain)

Domain 2
12 km, 103 x 115

Domain 3
4 km, 163 x 118

34 layers

"Western Regional Air Partnership

Several Runs for Nov 2008 — Nov 2009

Simple physics, get it running with new hardware & software.

Added observational nudging on fine domain.

“Final” physics options

Ran MMS5 for comparison.

Updated to most recent version of model, tested higher nudging coefficients.
Next .... Add more observational data in CO.

Upcoming (if needed) finer scale input data, add 1.3 km domain.
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Estes Park — 12 km away

How Good is WRF? Surface Winds 2009

RMNP — ROMANS Core Site
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How good is WRF? Upper Air Winds, Top - Radar Wind Profiler 2009

97-m Mode Profiler Wind Directions By Height Apr - May 2009
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Transport from
Northeastern
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Transport From Source: NE Colorado by month of year \ Transport From Source: NE Colorado by hour of day
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How Good is WRF? Precipitation,
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Regression Techniques of Source Apportionment

Assumption: The concentration measured at the receptor is some linear
combination of the contributions of several sources.

Concentration = a, Source, + a, Source, + ...

TrMB ( Trajectory Mass Balance)

Use many concentrations of 1 species and (most simply) counts of trajectory
endpoints in source regions to predict average attributions over a long period.

More Sensitive To:

Choice of source areas, input met data, trajectory model, and
including all relevant areas.

Less Sensitive To:

Trajectory length, trajectory height.
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TrMB Attributions of Ammonia Concentrations
2006 (final) and 2009 (PRELIMINARY!)

Colorado | Eastern U.S. | Western U.S. Concentration
(%) ) ) (ng/m?)
Spring 2006 56+ 5 82 364 0.14
Summer 2006 50+7 21+3 29+5 0.35
Winter 2008/09 37 44 20 0.09
Spring 2009 32 6 62 0.24
Summer 2009 30 10 61 0.27
Fall 2008/09 23 10 66 0.19

Upcoming work:

1. Run wrf again with more observational nudging.

2. Re-select source areas (currently using those from 2006) to better reflect 2009
emissions and reduce collinearities between source areas.

3. Try an eigenvector technique to automate source area choices.
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CAFO ammonia emissions near
Brush are about twice as high in the
summer as in the winter. Why such
high reduced N concentrations in
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A probable meteorological answer:
Wintertime stagnation.

Ventilation coefficient is the mixing
height multiplied by the wind speed.

Ventilation Coefficient at Brush
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Summary

1. ROMANS Il as a follow up to ROMANS | - Enhanced techniques to better measure
reactive nitrogen. ROMANS Il was a full year while ROMANS | was April and July only.
New emissions data, new met model, tweaks to AQ model, ensemble trajectories.

2. Challenges — Reactive N is hard to measure and hard to model. Complex terrain adds
complexity. WRF’s wind speeds are too high, it has too much precipitation, and WRF
has trouble with wind directions in small valleys. Yet, it’s still better than the
alternative wind fields and improvements in nudging are planned.

3. Preliminary back trajectory findings:

 There are seasonal and diurnal trends in transport. Upslope easterly flow is more
likely in the afternoon, somewhat more likely in summer. Easterly flow is more
likely during precipitation than during dry periods.

* Predominant wind flow is westerly, so simple trajectory methods attribute the
highest mean fraction to sources to the west.

* However, when there is easterly transport, the likelihood of high concentrations is
high.

* There is evidence of low winter mixing heights and low wind speeds affecting
concentrations near sources.

These results are preliminary and only part of a weight-of-evidence analysis. These
are (so far) attributions of concentrations, not of deposition.
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