Passive Ammonia Monitoring in the United States: Comparing Three Different Sampling Devices

Puchalski, Melissa^a; Sather, Mark^b; Walker, John T.^c; Lehmann, Christopher^d; Gay, David^d; Mathew, Johnson^e; Robarge, Wayne^f

The contribution of nitrogen to ecosystems and to PM_{2.5} formation is known to be significant in the United States. To date, there have been few monitoring efforts to establish a total nitrogen baseline, or measure trends and regional variability of total nitrogen. The US EPA is faced with tightening budgets and stricter PM_{2.5} National Ambient Air Quality Standards (NAAQS) with an increasing need to understand the spatial and temporal variability of NH₃ concentrations to evaluate and validate air quality models and deposition flux estimates. Passive samplers have the benefit of being easy to deploy, cost-effective and provide an accurate measurement. The trade-off is that passive samplers provide lower temporal resolution, typically 1 to 2 weeks. The US EPA's ORD has deployed the Adapted Low-Cost Passive High Absorption (ALPHA) passive sampler at several sites throughout NC as part of the CAMNet study. The NADP has deployed Radiello® passive samplers at more than 50 sites as part of the Ammonia Monitoring Network (AMoN). EPA's Region 6 Air Quality group deployed Ogawa passive samplers throughout the southwest and central US to begin studying the potential effects of NOx controls from the oil/gas and power generation industries on ambient NH₃ concentrations and regional haze. This paper compares the accuracy and precision of the three passive samplers. Each sampler was shown to be comparable and reliable; however, each sampler also has pros and cons. The lessons learned from the deployment of each sampler should be used when planning a research or network-wide study.

^aClean Air Markets Division, U.S. EPA 1200 Pennsylvania Ave NW Washington D.C. (202)343-9882 puchalski.melissa@epa.gov

^b Air Quality Analysis Section, U.S. EPA Region 6 1445 Ross Ave. Dallas, TX

^c National Risk Management Research Laboratory, U.S. EPA 109 T.W. Alexander Dr. Research Triangle Park, NC

^d National Atmospheric Deposition Program, Illinois State Water Survey, University of Illinois at Urbana-Champaign 2204 Griffith Dr.

^e Houston Laboratory, U.S. EPA Region 6 10625 Fallstone Rd. Houston, TX

^f North Carolina State University P.O. Box 7619 Raleigh, NC