Nitrogen Loading and Climate Change Effects on U.S. Water Resources

JS Baron, EK Hall, BT Nolan, JC Finlay, E Bernhardt, JA Harrison, F Chan, EW Boyer, RT Howarth

≈USGS

U.S. Water Resources

Lakes, Reservoirs, Streams, Rivers, Wetlands, Estuaries

- 1. Nearly all US waters are degraded by excess Nr
- 2. Nr is transported to coastal waters if not processed along the way → burial or denitrification

AQUATIC SYSTEMS ARE HOTSPOTS FOR DENITRIFICATION

- 3. Massive hydrologic manipulation of US waters both increases and decreases the rate of delivery to coasts
- 4. Climate change will also both increase and decrease rate of delivery through changes in the hydrologic cycle

Where Does the N Come From?

Nearly all US waters are degraded by excess Nr

Well-known adverse effects

- Eutrophication
- Acidification (incl. marine)
- GHG production
- Damage to human health
- Hypoxia and anoxia
- Biodiversity loss
- Economic costs

Many US Waters Have Excessive Nitrogen

- Median [Total N] in Ag regions 6X greater than background (0.5 mg/L)
- 64% of shallow groundwaters in ag/urban have elevated N
- >20% shallow groundwater wells exceed human health standards for N
- Northeast, Midwest, and all mountains affected by atmospheric deposition

US Streams Have High N Concentrations

Streams

EXPLANATION

Predicted total nitrogen concentration, in milligrams per liter

Dubrovsky et al. 2010

High N Concentrations in US Groundwaters

EXPLANATION

Predicted nitrate concentration, in milligrams per liter

Dubrovsky et al. 2010

Missing data

Nitrogen Pollution in Coastal Waters Shifting Redox in Coastal Waters

World Resource Institute 2011

Nearly all US waters degraded by excess Nr

- Nearly all US waters degraded by excess Nr
- Nr is transported to coastal waters if not processed along the way
 burial or denitrification

Denitrification is Microbial

Need sufficient residence time, landscape connectivity, low O_2 , organic C, nutrients to maintain optimal microbial sites

Denitrification is Microbial

Need sufficient residence time, landscape connectivity, low O_2 , organic C, nutrients to maintain optimal microbial sites

December 2006

A SYNTHESIS OF DENITRIFICATION

Seitzinger et al. 2006

2067

Pre-1900 U.S. River N Flux

Global NEWS estimates (Harrison) w/thanks to E. Bernhardt, J. Galloway, E. Boyer, S. Seitzinger, J. Cole

For watersheds with inputs >1070 kg N km⁻² yr⁻¹, ~25% of NANI is exported from landscapes to coastal oceans

Figure 2. The flux of N from the landscape in rivers is significantly and highly correlated with NANI on both (a) linear ($P = 2 \times 10^{-37}$) and (b) log–log ($P = 3 \times 10^{-32}$) scales across the 154 watersheds. In the log–log plot, we explored a possible threshold break

≈USGS

(Howarth et al. 2011)

TN retention in lentic systems in the conterminous US (kg N km⁻² yr⁻¹) (Total of about 5.5 Tg)

US wetlands denitrify ~5.8 Tg yr⁻¹, roughly 20% of the total anthropogenic reactive N load

Twenty-two states have lost at least 50 percent of their original wetlands

> 50% Wetlands Drained

Map: Mitsch and Gosselink 1993 Denitrification,: Jordan et al. 2011

N₂O emissions from aquatic ecosystems are globally important

- Total global anthropogenic N₂O ~17 Tg
- Agricultural soils most important source
- Rivers: 0.68 Tg; <1% of total N denitrified (Beaulieu et al. 2011)
- Rivers and estuaries 0.3-2.1 Tg (Kroeze et al. 2011)
- Lakes : 0.04-2.0 Tg from deposition alone (thus conservative; McCrackin and Elser et al. 2011)
- N₂O emissions increase with N load

N Load Affects Other GHG Production

- Wetlands and lakes are strong sources of CH_4 emissions
- CH₄ and CO₂ increase with both N load and temperature (Liu and Greaver 2009)

- Nearly all US waters degraded by excess Nr
- Nr is transported to coastal waters if not processed along the way → burial or denitrification
- Massive hydrologic manipulation of US waters both increases and decreases the rate of delivery to coasts

US Water Resources are Highly Managed

- 75,000 dams > 2 m
- 1000s of small reservoirs
- Tile drains and urban storm drains
- Levees and channelization
- Wetland conversion

- Nearly all US waters degraded by excess Nr
- Nr is transported to coastal waters if not processed along the way
 burial or denitrification
- The massive hydrologic manipulation of US waters both increases and decreases the rate of delivery to the coasts
- Climate change will both increase and decrease rate of delivery through changes in the hydrologic cycle and increases in temperature.

Projected Changes in Annual Runoff, 2041-2060

Percentage change relative to 1900-1970 baseline. Any color indicates >66% of models agree on sign of change; diagonal hatching indicates >90% agreement.

Milly et al. 2005

Climate-N Interactions Summary

- N export to coasts is proportional to the input
- N export is approx. 25% of inputs
- Freshwaters are hotspots for N denitrification
 - Total N inputs to US ~24 Tg in 2000
 - Lakes/reservoirs retain 5.5 Tg
 - Wetlands 5.8 Tg
 - Rivers similar to lakes

Climate-N Interactions Summary

- For denitrification to be effective, it requires NO₃ and microbes to be coupled in time and space
 - Hydrologic manipulation and climate change alter residence time and landscape connectivity; restoration is not yet a mature science
- To reverse and prevent the damage from Nr the real solution is to reduce the inputs

w/ thanks to Bernot and Dodds 2005

The remainder of Nr not accounted for in riverine exports is stored or emitted to the atmosphere as N_2 or N_2O

- Nitrate loading stimulates denitrification; N₂O is only ~1% of total denitrification in streams and rivers (Beaulieu et al. 2011)
- Same is true for lakes; total estimated US denitrification is 20,000 kg N km-2 yr-1
- The load is more important than climatic differences

