Developing the Critical Loads and Target Loads of SO_4^{2-} , NO_3^{-} and NH_4^{+} in Watersheds of the Great Smoky Mountain National Park

Qingtao Zhou¹, Charles T Driscoll¹, Steve E Moore², John S.Schwartz³

- ¹Department of Civil and Environmental Engineering, Syracuse University, Syracuse NY 13244,
- ² Great Smoky Mountains National Park, 107 Park Headquarters Road, Gatlinburg, TN 37738,
 - ³ Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996-2010

Outline

- Background
- Objectives
- Approach
- Results
 - ◆ Example-Noland Divide watershed
 - ◆ Analysis of historical acidification and recovery
 - ◆ Comparison between Great Smoky Mountain and the Adirondacks
- Conclusions

Great Smoky Mountain National Park (GSMNP)

Objectives

- To assess the response of streams and soils to past and potential future changes in the acidic deposition.
- To establish the Target Loads (TL) and Critical Loads(CL) for N and S deposition in watersheds of the Great Smoky Mountain National Park (GSMNP).
- To explore the factors that control the critical loads in the GSMNP.
- Inform the Total Maximum Daily Load process.

Approach: the criterion of choosing different sites in GSMNP

Study sites in block units						
Block	Basin Area	Elevation	Anakeesta			
1	$1-10 \text{ km}^2$	<1000m	>10%			
2	1-10km ²	>1000m	>10%			
3	1-10km ²	<1000m	None			
4	1-10km ²	>1000m	None			
5	10km^2 - 20 km^2	<1000m	>10%			
6	10km ² -20 km ²	>1000m	>10%			
7	10 km ² -20km ²	<1000m	None			
8	10 km^2 - 20 km^2	>1000m	None			

Physical and chemical characteristics of different sites

	Elevation (m)	Watershed areas(km²)	Disturbance	Vegetation	NO ₃ (μeq/L)	ANC (μeq/L)
Noland Divide	1798	0.174	Balsam Woolly Adelgid	SF	44.3	4.3
Cannon Creek	751	4.19	Land disturbance	HD	20.6	17.1
Cosby Creek	783	5.78	Land disturbance	HD	38.2	36.8
Goshen Prong	1046	7.29	Logging	HD	21.2	19.3
Indian Camp Creek	1205	6.31	Land disturbance	HD	42.1	16.9
Left Prong Anthony	909	1.61	None	SF	23.4	35.4
Lost Bottom	1000	5.15	Land disturbance	HD	7.7	59.2
Mill Creek	545	10.92	Land disturbance	HD	56.1	17.0
Pretty Hollow	903	11.18	Land disturbance	HD	16.6	46.1
Sugar Fork	780	2.14	Land disturbance	HD	3.7	86.3
Thunderhead	664	11.26	Fire	HD	14.4	33.2
Walker Camp	1386	4.24	None	HD	38.0	-13.3

Approach

Approach

Results: Model Performance

Results:

Result: Predictions of future response of stream ANC to different scenarios of nitrate, ammonium and sulfate deposition in Noland Divide Watershed

Results:

Historical Acidification(HA)

Recovery

How does the recovery of GSMNP compare with Adirondack watersheds?

Recovery	Target 1	oad(2050)	Critical load(2200)		
Regions		$rac{\Delta ANC(\mu eq.L^{-1})}{\Delta NO_3^-(eq.ha^{-1})}$	$rac{\Delta ANC(\mu eq.L^{-1})}{\Delta SO_4^{2-}(eq.ha^{-1})}$	$egin{aligned} rac{\Delta ANC(\mu eq.L^{-1})}{\Delta NO_3^-(eq.ha^{-1})} \end{aligned}$	
Adirondack	0.06(±0.02)	$-0.02(\pm 0.01)$	0.12(±0.04)	0.01(±0.018)	
7 tan onder	0.00(±0.02)	0.02(±0.01)	0.12(±0.01)	0.01(±0.010)	
GSMNP	0.03(±0.01)	$0.07(\pm 0.03)$	0.06(±0.01)	0.19(±0.04)	

Conclusions

- The stream ANC in the GSMNP increases to a greater extent in response to NO_3^- decreases than with SO_4^{2-} or NH_4^+ decreases.
- There is a strong relationship between historical acidification with changes in NO₃⁻ and SO₄²⁻ deposition and historical ANC (1850).

Conclusions

• Comparison between GSMNP and the Adirondacks suggests that surface water ANC responds more to changes in SO₄²⁻ deposition in Adirondacks, but more to changes in NO₃⁻ deposition in the GSMNP.

