Implementing a DSS to assess CLs of atmospheric S deposition in the SE US

Paul Hessburg, Keith Reynolds, Timothy Sullivan, Nick Povak, Brion Salter, Todd McDonnell, Bill Jackson

Study area

• Study Area Size: 14.3 MM ha (35.4 MM ac)

• Domain: Ridge & Valley, Appalachian Plateau ecoregions in VA, WV; Blue Ridge ecoregion in VA, WV, NC, TN

EMDS, logic, & decisions

- Spatial decision support for environmental analysis and planning in *ArcMap*
- □ Logic modeling
 - To assess environmental state(s)
- Decision modeling
 - To prioritize landscape elements based on environmental states & mgr. considerations

19 October 2010

Logic for CL

- CL methods:
- 1) MAGIC
- 2) Water chemistry
- 3) bgc ANC/BCw predictions

ANC methods:1) Water chemistry2) bgc ANC predictions

Predicting ANC/BCw in SE US streams: Status of current modeling efforts

Paul Hessburg, Keith Reynolds, Nick Povak, Brion Salter USDA-FS, PNW Res. Sta. Tim Sullivan, Todd McDonnell, E&S Env. Chem., Corvallis, OR

Background

- Post-hoc modeling effort
- Predict continuous ANC/BCw from training data
- Water chemistry data, existing water quality databases
- Water chemistry sites represented by most recent spring sample
- 933 total sites with water chemistry, ANC values
- 140/933 sites have estimated BCw via MAGIC
- BCw + ANC used to estimate CL
- BCw results not shown, similar modeling approach

Study area

Methods

- Started with 56 potential predictors, incl. topo., soil, climatic, lithologic, vegetation, & SOx dep. vars (wet, dry, total)
- Eliminated sig. multi-collinearity \rightarrow 33 vars
- Submitted the database of these 33 vars to a "Gatekeeper" modeling approach

Data Sources: Ameriflux, PRISM, STATSGO, EPA-CMAQ, NED, NLCD2000, E&S Env Chem

Results

Important predictors (% var. explained)

Threshold modelANC 250 μ	eq/L	Continuous modelANC < 250			
Carbonaceous lithology	(17.7)	Siliceous lithology	(24.3)		
Percent public land	(17.6)	No. of GS Days w/ T > 32.2° C	(18.2)		
Percent forest cover	(15.2)	Dry sulfur deposition	(11.3)		
Consec. day w/VPD>750pa,T>10°C (9.7)		Max # Days w/o PCP, T > 10°C)	(10.1)		
Soil pH	(8.7)	Soil pH	(8.3)		
95 %-tile diurnal GS surface TMP	(7.5)	Percent soil clay	(7.6)		
Non-GS precipitation	(6.8)	Topographic wetness index	(6.2)		
Percent soil clay	(6.8)	Percent mixed-conifer cover	(5.8)		
Flow accumulation	(5.4)	Percent forest cover	(4.9)		
GS days >5.6° C	(4.6)	Flow accumulation	(3.3)		

Data Sources: Ameriflux, PRISM, STATSGO, EPA-CMAQ, NED, NLCD2000, E&S Env Chem

How we got to 10 predictors, continuous

Scatterplot of Gatekeeper model performance 48 unique combinations of the data, ea. RF & GWR, (3x4x4) below 1. Design balancing (3x): imbalanced_{as is}, oversampled ANC_{hi}, undersampled ANC_{low}) 2. Varying the ANC threshold (4x): [150, 200, 250, 300], 3. Varying the cutoff (4x): [0.4, 0.5, 0.6, 0.7]

Best performing models

			Low				
	Continuous	Data	ANC	Prob.	Misclass.	RF	Gatekeeper
ID	model	sampling	threshold	cutoff	Rate (%)	RMSE	RMSE
31	RF	Imbalanced	250	0.6	8.6	292.1	119.9
34	RF	Imbalanced	250	0.7	10.6	326.3	131.2
46	RF	Imbalanced	300	0.7	8.2	324.5	136.2
29	RF	Oversample	250	0.5	9.1	293.5	119.5
35	RF	Oversample	250	0.7	10.3	339.8	125.3
44	RF	Oversample	300	0.6	5.8	301.6	120.9
47	RF	Oversample	300	0.7	9.4	293.0	141.6
22	GWR	Imbalanced	200	0.7	11.2	341.5	90.7
34	GWR	Imbalanced	250	0.7	8.2	279.5	121.0
43	GWR	Imbalanced	300	0.6	6.6	338.0	124.3
35	GWR	Oversample	250	0.7	8.2	309.6	104.9

Predicted ANC, 250, 0.5, RF

• Can be specified w/ geographic variants to the model

Note: We are predicting for 159 MM grid cells using 933 sampled cells; Stream networks represented by 4MM cells, more tractable, 1/40th

K-means clustered top 10 predictors into 2-5 regions

Gatekeeper model

Gatekeeper model

*RF model performance statistics for modeled regions

- Results: some regions are undersampled
- Geographic variation in predictors likely exists
- Cannot be shown with this imbalanced sample

Summary

- ANC predictive model (imbalanced design) is reasonably robust to prediction & stable:
 - Gatekeeper model with RF explains ~60% of the multi-variance
 - Balancing design would:
 - Improve variance explained
 - Expose geographic variants
 - Highest uncertainty what drives high ANC
 - Affects overall model predictions, low + high
- Lack of QC & evenness in data scaling w/ soils & geology data reduces model sensitivity
 - Better data \rightarrow better model specificity
- Dry S deposition was leading predictor
 - expected to see wet S-deposition a stronger predictor in continuous model

Thank you

Questions?

phessburg@fs.fed.us kreynolds@fs.fed.us

ANC Class (µeq/L)