Acidification over TIME The Long Term Response of Adirondack Surface Waters (TIME) to Reductions in Acidic Deposition #### **Presentation Outline** - Objective - Methods - Wet Deposition Trends - Regional Lake Trends - Factors Regulating Lake Response - Conclusions ## Objective - Title IV of 1990 CAAA - Acid Rain Program - to decrease SO₂ emissions - NO_x Budget Program for NO_x emissions - Decreases in SO₄²⁻ and NO₃⁻ deposition - What is response of sensitive ecosystems to these changes? - Assess Recovery of Adirondack Lakes From Acidic Deposition #### Methods - Long Term Monitoring Programs - NADP NTN - NOAA's NEXRAD (WSR-88D) Doppler radar system - TIME - Statistical Analysis - Mann Kendall Test for Annual Trends - Significance when p <.05 - Watershed Characteristics - Extrapolation to regional estimates - Fluxes - Conc. * Precipitation in*.6 (runoff)= (meq/m²-yr) # Temporally Integrated Monitoring of Ecosystems (TIME) - 43 Original Lakes, 42 Currently - Statistical Weighting Factors - to extrapolate regional trends - 1991-2007 - Annual Summer Sampling - Main Focus on Sulfate Effects | Constituents Sampled: | | | |---------------------------------|-------------------------------|--| | Acid Anions (C _A): | SO ₄ ²⁻ | | | | NO ₃ - | | | Base Cations (C _B): | Na ⁺ | | | | Mg ²⁺ | | | | K+ | | | | Ca ²⁺ | | | Carbon: | DOC | | | | DIC | | | Other Parameters: | Al 3+ | | | | рН | | | | NH ₄ ⁺ | | #### Lake ANC: Classification and Calculations #### **Classifications:** - To look at response variations - Based on 2007 ANC $_{ m G}$ - Bias to sensitive lake populations - Calculations: - ANC _G - Measured TIME Value - •ANC _{Calc} | IC _{Calc} | | |---|------------------------------| | • Σ Base Cations (C _B) – Σ Strong A | cid Anions (C _A) | | Classification | ANC
Range
(µeq/L) | #of
Lakes | |------------------|-------------------------|--------------| | Acute Concern | < 0 | 6 | | Severe Concern | 0-20 | 10 | | Elevated Concern | 20-50 | 14 | | Moderate Concern | 50-100 | 11 | | Low Concern | >100 | 1 | #### Wet Deposition Trends (Extrapolated from NY98 and NY20) # Trend Summaries: (meq/m²-yr) | Paran | neter: | Graph
Slope: | Mean
Trend: | #
Sig* | |----------|-------------------------------|-----------------|----------------|-----------| | Precipi | tation: | +.004 | +.004 | 2 | | Acid | SO ₄ ²⁻ | -1.08 | -1.04 | 42 | | Anions: | NO ₃ - | 69 | 69 | 21 | | | Na+ | 1 | 08 | 23 | | Base | Ca ²⁺ | .006 | .04 | 2 | | Cations: | K+ | .002 | .004 | 1 | | | Mg ²⁺ | 004 | .008 | 0 | | | SUM | | 072 | 0 | # Lake Sulfate (SO₄²⁻) Concentrations | ANC Class: | Slope:
(µeq/L-yr) | |------------|----------------------| | Acute | -2.02 | | Severe | -2.63 | | Elevated | -1.58 | | Moderate | -2.86 | | Low | -2.61 | #### Across all Lakes: - 41 Decreasing Trends - 30 Significant - -2.12 * μeq/L-yr # Wet SO_4^{2-} v. Lake SO_4^{2-} Trends • Poor relationship between annual wet SO_4^{2-} deposition and lake SO_4^{2-} fluxes ($R^2=.055$) | Measurement: | Deposition: | | Lak | ke Fl | ux: | | |-------------------------------|--------------------|----|-------|-------|-----|-------| | Average Trend:
(meq/m²-yr) | -1.04 | | | -1.19 | | | | Range:
(meq/m²-yr) | 33 | to | -1.87 | +1.31 | to | -4.31 | | % Decreasing : | 100% | | | 35.7% | Ó | | | # Significant*: | 42 | | | 13 | | | Low R² may result from: - •No dry deposition - •Limited runoff estimates - Uniform changes However, consistent regional decreases suggest cause and effect So are there improvements in acid-base chemistry? # **Resulting ANC Trends** | Parameter: | ANC _G : | | | A | NC | Cale • | |------------------------------|--------------------|----|-------|------|----|--------| | Average Trend:
(μeq/L-yr) | +1.08 | | | +2.0 | 03 | | | Range:
(µeq/L-yr) | -1.59 | to | +3.47 | 68 | to | +7.43 | | % Increasing : | 80.1% | | | 97.6 | % | | | # Significant*: | 9 | | | 26 | | | ### ANC Status of Time Lakes 1997-2007 | ANC | % of TIME Lakes | | | | |----------|-----------------|---------------|------|--| | Class: | 1997 | 2002-
2003 | 2007 | | | Acute | 17.5 | 16.7 | 14.3 | | | Severe | 30.0 | 26.2 | 23.8 | | | Elevated | 37.5 | 33.3 | 33.3 | | | Moderate | 7.5 | 19.0 | 26.2 | | | Low | 5.0 | 9.5 | 2.4 | | ### Regional Recovery #### Post Title IV: - •132 Lakes no longer acidic - •46.5% decrease - •152 Lakes Still Acidic - •Stoddard et. al (2002) 8.1% - Trends have followed expectations **Years Averaged** ## What Drives Variations in Recovery? - ANC $_{Calc}$ = Σ Base Cations (C_B) Σ Strong Acid Anions (C_A) Expected greatest ANC increases with: - Greater SO₄²⁻ decreases or Base Cation increases - Previous reports of Base Cations trends limiting recovery # Do SO₄²⁻Trends Drive Recovery? | ANC: | R²: | Slope: | |------|-------|--------| | Calc | .0004 | .03 | | Gran | .002 | .05 | ### Do Base Cations Drive Recovery? | ANC: | R²: | Slope: | |------|------|--------| | Calc | .440 | .48 | | Gran | .328 | .29 | # Strongest Relationship to Lake Trend Difference ΔC_B - ΔC_A **Increases** | ANC: | R ² : | Slope: | |------|------------------|--------| | Calc | .858 | 1 | | Gran | .700 | .63 | Difference in C_B and C_A Lake Trends ($\mu eq/L-yr$) #### What Drives the Difference in Trends? | Lake
Characteristic: | R ² : | |--------------------------|------------------| | Base Saturation of Soils | .016 | | Watershed
Elevation | .054 | | Watershed
Area | .003 | Difference in ΔC_B and ΔC_A Lake Trends ($\mu eq/L-yr$) Changes Well Dispersed Among ANC Class and Lake Characterizations # Dissolved Organic Carbon (DOCs) | Parameter: | 91-07: | | | 91-07: | | | 04-07: | | | |-------------------------------|--------|--------|------|--------|--------|------|--------|--------|------| | Average Trend:
(mg C/L-yr) | +.025 | | | +.105 | | | 819 | | | | Range:
(mg C/L-yr) | 25 | t
o | +.34 | 10 | t
o | +.56 | -3.6 | t
o | +.13 | | % Increasing : | 69.0% | | | 81.0% | | | 9.5% | | | | # Significant*: | 4 | | | 7 | | | 0 | | | # Conclusions - Strong decreases in wet SO₄ deposition (-1.04 meq/m2-yr) and SO₄ lake fluxes (-1.19 meq/m2-yr) - Increases in ANC_G (+1.08 ueq/L-yr) and ANC_{CALC} (+2.03 ueq/L-yr) - Substantial decreases in the number of acidic lakes (132) - Decreases in wet SO₄ deposition is weakly related to increases in ANC - Increases in ANC strongly related to ΔC_B ΔC_A - Changes in ANC_{CALC} exceed ANC_G, but limited trends in DOC ## Acknowledgements - The U.S. Environmental Protection Agency - Clean Air Markets Division - NCER Undergraduate Fellowship - The National Atmospheric Deposition Program - The New York Electric Energy Research and Development Authority - The New York State DEC - Syracuse University - Photo Credits - Karen Roy, ALSC/NYDEC - James Dukett, Adirondack Lakes Survey Corporation