Acidification over TIME

The Long Term Response of Adirondack Surface Waters (TIME) to Reductions in Acidic Deposition

Presentation Outline

- Objective
- Methods
- Wet Deposition Trends
- Regional Lake Trends
- Factors Regulating Lake Response
- Conclusions

Objective

- Title IV of 1990 CAAA
 - Acid Rain Program
 - to decrease SO₂ emissions
- NO_x Budget Program for NO_x emissions
- Decreases in SO₄²⁻ and NO₃⁻ deposition

- What is response of sensitive ecosystems to these changes?
- Assess Recovery of Adirondack Lakes From Acidic Deposition

Methods

- Long Term Monitoring Programs
 - NADP NTN
 - NOAA's NEXRAD (WSR-88D)
 Doppler radar system
 - TIME
- Statistical Analysis
 - Mann Kendall Test for Annual Trends
 - Significance when p <.05
 - Watershed Characteristics
 - Extrapolation to regional estimates
 - Fluxes
 - Conc. * Precipitation in*.6 (runoff)= (meq/m²-yr)

Temporally Integrated Monitoring of Ecosystems (TIME)

- 43 Original Lakes, 42 Currently
- Statistical Weighting Factors
 - to extrapolate regional trends
- 1991-2007
- Annual Summer Sampling
- Main Focus on Sulfate Effects

Constituents Sampled:		
Acid Anions (C _A):	SO ₄ ²⁻	
	NO ₃ -	
Base Cations (C _B):	Na ⁺	
	Mg ²⁺	
	K+	
	Ca ²⁺	
Carbon:	DOC	
	DIC	
Other Parameters:	Al 3+	
	рН	
	NH ₄ ⁺	

Lake ANC: Classification and Calculations

Classifications:

- To look at response variations
- Based on 2007 ANC $_{
 m G}$
- Bias to sensitive lake populations
- Calculations:
- ANC _G
 - Measured TIME Value
- •ANC _{Calc}

IC _{Calc}	
• Σ Base Cations (C _B) – Σ Strong A	cid Anions (C _A)

Classification	ANC Range (µeq/L)	#of Lakes
Acute Concern	< 0	6
Severe Concern	0-20	10
Elevated Concern	20-50	14
Moderate Concern	50-100	11
Low Concern	>100	1

Wet Deposition Trends

(Extrapolated from NY98 and NY20)

Trend Summaries: (meq/m²-yr)

Paran	neter:	Graph Slope:	Mean Trend:	# Sig*
Precipi	tation:	+.004	+.004	2
Acid	SO ₄ ²⁻	-1.08	-1.04	42
Anions:	NO ₃ -	69	69	21
	Na+	1	08	23
Base	Ca ²⁺	.006	.04	2
Cations:	K+	.002	.004	1
	Mg ²⁺	004	.008	0
	SUM		072	0

Lake Sulfate (SO₄²⁻) Concentrations

ANC Class:	Slope: (µeq/L-yr)
Acute	-2.02
Severe	-2.63
Elevated	-1.58
Moderate	-2.86
Low	-2.61

Across all Lakes:

- 41 Decreasing Trends
- 30 Significant
- -2.12 * μeq/L-yr

Wet SO_4^{2-} v. Lake SO_4^{2-} Trends

• Poor relationship between annual wet SO_4^{2-} deposition and lake SO_4^{2-} fluxes ($R^2=.055$)

Measurement:	Deposition:		Lak	ke Fl	ux:	
Average Trend: (meq/m²-yr)	-1.04			-1.19		
Range: (meq/m²-yr)	33	to	-1.87	+1.31	to	-4.31
% Decreasing :	100%			35.7%	Ó	
# Significant*:	42			13		

Low R² may result from:

- •No dry deposition
- •Limited runoff estimates
- Uniform changes

However, consistent regional decreases suggest cause and effect

So are there improvements in acid-base chemistry?

Resulting ANC Trends

Parameter:	ANC _G :			A	NC	Cale •
Average Trend: (μeq/L-yr)	+1.08			+2.0	03	
Range: (µeq/L-yr)	-1.59	to	+3.47	68	to	+7.43
% Increasing :	80.1%			97.6	%	
# Significant*:	9			26		

ANC Status of Time Lakes 1997-2007

ANC	% of TIME Lakes			
Class:	1997	2002- 2003	2007	
Acute	17.5	16.7	14.3	
Severe	30.0	26.2	23.8	
Elevated	37.5	33.3	33.3	
Moderate	7.5	19.0	26.2	
Low	5.0	9.5	2.4	

Regional Recovery

Post Title IV:

- •132 Lakes no longer acidic
 - •46.5% decrease
 - •152 Lakes Still Acidic
- •Stoddard et. al (2002) 8.1%
- Trends have followed expectations

Years Averaged

What Drives Variations in Recovery?

- ANC $_{Calc}$ = Σ Base Cations (C_B) Σ Strong Acid Anions (C_A) Expected greatest ANC increases with:
- Greater SO₄²⁻ decreases or Base Cation increases
- Previous reports of Base Cations trends limiting recovery

Do SO₄²⁻Trends Drive Recovery?

ANC:	R²:	Slope:
Calc	.0004	.03
Gran	.002	.05

Do Base Cations Drive Recovery?

ANC:	R²:	Slope:
Calc	.440	.48
Gran	.328	.29

Strongest Relationship to Lake Trend Difference ΔC_B - ΔC_A

Increases

ANC:	R ² :	Slope:
Calc	.858	1
Gran	.700	.63

Difference in C_B and C_A Lake Trends ($\mu eq/L-yr$)

What Drives the Difference in Trends?

Lake Characteristic:	R ² :
Base Saturation of Soils	.016
Watershed Elevation	.054
Watershed Area	.003

Difference in ΔC_B and ΔC_A Lake Trends ($\mu eq/L-yr$)

Changes Well Dispersed Among ANC Class and Lake Characterizations

Dissolved Organic Carbon (DOCs)

Parameter:	91-07:			91-07:			04-07:		
Average Trend: (mg C/L-yr)	+.025			+.105			819		
Range: (mg C/L-yr)	25	t o	+.34	10	t o	+.56	-3.6	t o	+.13
% Increasing :	69.0%			81.0%			9.5%		
# Significant*:	4			7			0		

Conclusions

- Strong decreases in wet SO₄ deposition (-1.04 meq/m2-yr) and SO₄ lake fluxes (-1.19 meq/m2-yr)
- Increases in ANC_G (+1.08 ueq/L-yr) and ANC_{CALC} (+2.03 ueq/L-yr)
- Substantial decreases in the number of acidic lakes (132)
- Decreases in wet SO₄ deposition is weakly related to increases in ANC
- Increases in ANC strongly related to ΔC_B ΔC_A
- Changes in ANC_{CALC} exceed ANC_G, but limited trends in DOC

Acknowledgements

- The U.S. Environmental Protection Agency
 - Clean Air Markets Division
 - NCER Undergraduate Fellowship
- The National Atmospheric Deposition Program
- The New York Electric Energy Research and Development Authority
- The New York State DEC
- Syracuse University
- Photo Credits
 - Karen Roy, ALSC/NYDEC
 - James Dukett, Adirondack Lakes Survey Corporation