

EPA's Collaborative Efforts for Ammonia Monitoring in the U.S.

M. Rury¹, G. Lear¹, B. Lee¹, C. Rogers² and N. Watkins³

¹ US Environmental Protection Agency, CAMD, Washington DC
² Mactec Engineering and Consulting, Gainesville, FL
³ US Environmental Protection Agency, OAQPS, Research Triangle Park, NC

Overview

- Ambient NH₃ concentrations are increasing with limited knowledge of:
 - Trends
 - Regional variability
 - Seasonality
 - Deposition fluxes
- Gaseous (free) NH₃ concentrations may increase with decreasing SO₂ and NO_x emissions (less aerosol to neutralize) but dry deposition of NH₃ is still not accounted for by monitoring networks

Need for Ammonia Monitoring

- Model development
 - CMAQ development high temporal and spatial resolution
 - Model validation for ammonia deposition
 - Ecological model development eutrophication from $\rm NH_3$ deposition
- PM_{2.5} NAAQS and PM_{2.5} emissions reductions required under new regulation (CAIR replacement rule??)
 - NH_3 is a basic component of particle formation for a significant fraction of $PM_{2.5}$ mass
 - Assessment of programs
 - Changes in fine particle composition

CAMD Participation in Ammonia Monitoring Efforts

- Existing monitoring networks used in ammonia monitoring equipment QA and development
 - CASTNET currently measures NO₃⁻, HNO₃, NH₄⁺
 - NADP wet deposition measurements (NH₄⁺, NO₃⁻)
 - CSN/NCore $(NH_4^+/NO_3^-, NO_y, NO_x)$
- Collaborative efforts between EPA divisions, NADP and Colorado State University (CSU) to develop new tools for ammonia monitoring
 - Passive and active sampling systems being explored

Existing Network Infrastructure

MARKE

WITED STAT

1 PROTI

Clean Air Status and Trends Network (CASTNET)

- Long-term monitoring network developed to assess regional trends in pollutant concentrations and dry deposition
- 87 site locations in rural areas including National Parks and Class One areas
- Many sites have been in operation for more than 15 years
- Dry deposition estimates

CASTNET 3-Stage Filter pack

• HNO₃ reacts with inlets

Gas and particle concentrations in air are measured by filter packs and then used to estimate daily dry deposition

CASTNET 4-Stage Filter pack

- CASTNET workshop held in RTP, NC in August to utilize the current infrastructure to meet future monitoring needs
- One consensus recommendation from the workshop add a phosphorous acid coated cellulose filter to capture volatilized NH_3 from NH_4NO_3 captured on the Teflon filter

National Atmospheric Deposition Network (NADP)

- Long-term wet deposition monitoring since 1978
- Weekly precipitation samples from over 250 sites analyzed for pH, SO₄²⁻, NO₃⁻, NH₄⁺, Cl⁻ and base cations
- Increasing NH₄⁺ measured in precipitation especially in the Midwest

0,20 0,00

National Atmospheric Deposition Program/National Trends Network http://nadp.sws.uiuc.edu

Ammonium ion concentration, 1994

Chemical Speciation Network (CSN)

- 192 Sites
- The Met One Super SASS[™] has 8 channels allowing for varied combinations and sequential sampling
- PM_{2.5} gravimetric mass
- PM_{2.5} speciation
- New NH₃ denuder of the Super SASS[™] would fit into existing structure

CAMD's collaborative efforts to develop NH_3 monitoring methods

- MARGA
 - Speciated multi-pollutant hourly measurements at RTP (CAMD/ORD) in the testing/development phase
- Met One Super SASS[™]
 - Daily denuder measurements in the testing phase. Jeff Collett (CSU) is working with OAQPS and CAMD to meet the requirements needed to deploy the denuders in the CSN network
- AMoN
 - NADP's passive ammonia monitoring network pilot project. Collaboration between NADP, CAMD, ORD, states, LADCO, etc.

Super SASS[™] Design for Measuring NH₃

- Miniature-parallel plate denuders to capture sample with enough room for filter cassettes under the bucket
- Comparison with ADS in CSU laboratory showed a 95% collection efficiency for NH₃

ZDevelopment/Initial Analysis by Dr. Susanne Herring (Aerosol Dynamics, Inc.) & Professor Jeffrey L. Collett, Jr. (CSU

Super SASS^m NH₃ Denuder Deployment

- Following acceptance testing, OAQPS will deploy Super SASS in the CSN
- CSN sites will be selected based on:
 - Collocation with other networks CASTNET, NADP, or IMPROVE
 - Collocation with other passive, continuous or active NH₃ monitoring
 - Future NCore site
 - Willing state, Tribe or local agency

Passive Ammonia Monitoring

- US Canada workshop (Chicago, 2007) on ammonia: participants came to a consensus on:
 - The need for ammonia monitoring
 - NADP should be the coordinating body
 - Passives should be explored
 - Long-term network is preferred
 - Widespread participation between agencies, states, Tribes and organizations is necessary

Pros and Cons of Passive Samplers

• Pros

- No pumps required
- No power source required
- Inexpensive
- Not prone to breakage during shipping and handling
- Ease of operation and set-up
- Cons
 - Annular denuders provide 24-hour samples while passives need to be exposed for 1-2 weeks or longer

The good, the bad and the ugly....

Sampler	Radiello	Adapted Low- cost Passive High- Absorption (ALPHA)**	Denuder***
Accuracy	20.8%	17.4%	_
(Median ARPD)*			
Precision	6.8%	10.0%	8.8%
(CV)**	0.070	10.070	0.070

*Accuracy from IL11 & OK99.

**Results from 5 site inter-comparison study (5/09-7/09) at IL11, OK99, NC35, NY67 and TX43.

***Denuders were run in triplicate at IL11 to compare precision of ADS to passive samplers.

Accuracy & Precision: Radiellos

NADP October 6-9, 2009, Saratoga Springs, NY

Accuracy & Precision: ALPHAs

UNITED STAN

Ammonia Monitoring Network (AMoN)

20 NADP sites across the US located in regions with high NH₃ emissions (modeled)

AMoN Network Operation

- Radiello passive samplers run in triplicate for precision measurements
- Two-week samples (and travel blank) are sent to ISWS CAL for analysis
- Concentration data is posted on the NADP AMoN website for users to download (http://nadp.sws.uiuc.ed u/nh3net/)

Seasonal NH₃ Concentrations

NADP October 6-9, 2009, Saratoga Springs, NY

MARKE

TED STAN

- Additional partners can enter cooperative agreement with NADP Program Office
- NADP's Central Analytical Laboratory will ship samplers every two weeks and analyze samples
- Program Office will QA and post the data on the NADP website

Conclusion

- What do we know now? Not much.
- Will the Super SASS[™] NH₃ denuders have a 95% collection efficiency in the field?
- Can we add a 4th filter to the CASTNET filter pack without creating a bias in other pollutants we currently capture?
- Travel blanks?
- Elevation sites?

NH₃ Monitor Inter-comparison Study

- Support from EPA (OAQPS, ORD, CAMD) w/ Mactec as contractor
- 5 sites with triplicate Radiello samplers (AMoN sites)
- 3 sites with Super SASS[™] + NH₃ denuders
- Annular denuders with 2-stage filter pack
 - NH₃-only
 - NH_3 , HNO_3 , NO_3^- , NH_4^+
- 4th filter on CASTNET filter pack
- CASTNET 3-stage filter pack

Map and schedule

- CASTNET 3-stage filter will run on normal weekly schedule
- Passive samplers will run on normal 2 week schedule
- CASTNET 4-stage filter pack, ADS and SASS[™] will run for 2 1 week samples every 6 weeks
- 1 year, nine 2-week sampling time periods

NH₃ Monitor Inter-comparison Study

- Final report to characterize:
 - CASTNET filter pack NH₃/NH₄⁺
 - OAQPS will use results to look at Super SASS[™] NH₃ mini parallel plate denuder
 - Precision
 - Accuracy
 - Adaptability in network
 - Elevated travel blanks or contaminations for phosphorous acid coated filters or denuders
 - Any NH₃ loss due to 1-week sample time for the Super SASS NH₃ denuders

Final thoughts

- Possibly have 3 networks providing ammonia concentration measurements in the future
 - AMoN
 - CASTNET
 - CSN/NCore
- Not possible without collaborating with other EPA divisions, NADP, other organizations, States, Tribes and universities to support ambient ammonia monitoring development

Acknowledgements

- State of Pennsylvania
- Cary Institute
- LADCO
- NADP
- Jeff Collett, Colorado State University (CSU)
- John Walker, ORD

