Critical Loads as a Policy Tool: Highlights of the NO_x/SO_x Secondary NAAQS Review

Anne Rea¹ and Jason Lynch²

Randy Waite¹, Ginger Tennant¹, Jen Phelan³ and Norm Possiel¹

¹EPA/OAR/Office of Air Quality Planning and Standards; ²EPA/OAR/Office of Atmospheric Programs; ³RTI, International

Presentation Overview

- Secondary NAAQS for NOx/SOx
 - Overview of Review
 - Targeted Ecological Effects
 - Conceptual Model of a Standard
 - Current Status
- Critical Loads for Acidity
 - Aquatic
 - Terrestrial (poster)
- Research Needs

Secondary NO_x/SO_x NAAQS Review

- Some Agency "firsts"
 - Independent Secondary Standard Review
 - Multi-pollutant Review
- NO₂ & SO₂ Secondary Standards first set in 1971:
 - $-NO_2$ reviewed in 1985, 1995
 - SO₂ reviewed in 1982
- Current Schedule
 - Notice of Proposed Rulemaking: Feb 2010
 - Final Rulemaking: Oct 2010

Targeted Ecological Effects

Conceptual Model for a Secondary Standard

Nationwide Total Reactive Nitrogen Deposition (2002)

Current Status of Review

- Known or anticipated adverse effects are occurring under current ambient loadings of N and S in sensitive ecosystems
 - Aquatic acidification high confidence
 - Terrestrial acidification high confidence
 - Aquatic nutrient enrichment (non-atmospheric sources) mixed confidence (strong relationship with N deposition in high alpine lakes in RMNP)
 - Terrestrial nutrient enrichment strong qualitative evidence
- Clean Air Scientific Advisory Committee view:
 - Sufficient information to set separate standards; necessary to do so to protect against aquatic and terrestrial acidification and terrestrial nutrient enrichment effects
- Currently in discussions with the plaintiff's regarding the schedule for the review

Aquatic Acidification

- Critical Loads Approach
 - Critical load approach gives us a tool to evaluate whether a waterbody and biota are impacted from acid deposition
 - Has air pollution reached a tipping point (threshold) for causing harmful effects to plants, animals, soils, or ecosystems?
 - A <u>critical load</u> indicates the amount of acidic input of sulfur and nitrogen deposition that a given lake or stream can neutralize and still maintain a specified level of ANC (e.g., 20, 50, 100 µeq/L)

Aquatic Acidification

- Ecological indicator
 - Acid Neutralizing Capacity (ANC) of surface waters
 - Chemical criteria of 20, 50, 100 µeq/L
 - Ecosystem effects
- Ecosystem services affected
 - Recreational fishing
 - Fish species richness
 - Biodiversity

Aquatic Acidification Case Studies

Critical Loads Calculations

- Steady State Critical Loads
 - Calculated critical loads for both the steady-State Water Chemistry (SSWC) and the First-order Acidity (FAB)
 - SSWC model results are presented
 - F-Factor or MAGIC to estimate weathering rates (DuPont et. al 2005)
- Surface water chemistry
 - EMAP, TIME and ALTM/LTM programs
 - SWAS-VTSSS-LTM programs
 - Single sample to weekly monitoring data
 - Base flow
- Critical load exceedances for acidity
 - Combined NADP Wet and CMAQ dry deposition
 - Year of 2002
 - N leaching flux (concentration of nitrate in runoff)

Critical Loads Calculations

Critical Load Exceedences (> ANC of 20 µeq/L)

- Deposition does not Exceed Critical Load
- Deposition Exceeds Critical Load

28% of Lakes Exceeded their calculated Critical Load

Critical Load Exceedences (> ANC of 50 µeq/L)

- Deposition does not Exceed Critical Load
- Deposition Exceeds Critical Load

44% of Lakes Exceeded their calculated Critical Load

(> ANC of 20 µeq/L)

- Deposition does not Exceed Critical Load
- Deposition Exceeds Critical Load

72% of Streams Exceeded their calculated Critical Load

Critical Load Exceedences (> ANC of 50 µeq/L)

- Deposition does not Exceed Critical Load
- Deposition Exceeds Critical Load

85% of Streams Exceeded their calculated Critical Load

Result Summary

- Adirondacks: 28 to 48% of modeled lakes cannot maintain an ANC ranging from 20 to100 µeq/L, respectively (n=169 lakes) under current N and S deposition levels
 - Scaled up to 1842 lakes in the Adirondacks: 13-51%
- Shenandoahs: 72 to 92% of modeled streams cannot maintain and ANC ranging from 20 to100 µeq/L, respectively (n=60 streams) under current N and S deposition levels

Research Needs

- Relationships between critical loads for aquatic acidity and effects on ecosystem services, especially due to incremental changes in an ecological indicator such as ANC
- Developing nationwide weathering rates, or weathering rates for aquatic ecosystems sensitive to acidification
- Developing a better understanding of the uncertainty in critical loads for acidity and exceedance values
- Developing methods for calculating critical loads for surface water acidity when data are absent or of poor quality
- Evaluating ways to combine multiple critical load estimates for surface waters and soils on a national scale
- Estimating ways to determine critical load parameters across different media (e.g., surface waters, soils).

For More Information

www/epa.gov/ttn/naaqs

or

Anne Rea <u>rea.anne@epa.gov</u> (919) 541-0053 Jason Lynch lynch.jason@epa.gov (202) 343-9257