

Office of Research and Development National Exposure Research Laboratory, Atmospheric Modeling Division

10/15/2009

Adapting CMAQ Deposition Fields for Critical Loads Analyses

Robin L. Dennis Kristen M. Foley National Exposure Research Laboratory Atmospheric Modeling and Analysis Division, US EPA

NADP 2009 Annual Meeting and Scientific Symposium Saratoga Springs, NY October 6-8, 2009

Adapting CMAQ Deposition Fields for Critical Loads Analyses

Need total deposition; data are sparse & incomplete Can get total deposition from CMAQ model But wet deposition considered to have too much error

Organization of Talk:

Outline approach to reduce CMAQ wet deposition error Walk through the analysis using 12km eastern domain

Characterized the final wet deposition results What is our residual error? What is its character?

Estimate error introduced into the dry deposition estimates Thoughts on wet deposition biases

Observed vs. CMAQ Wet Deposition SO₄

Observed vs. Precipitation Adjusted CMAQ Wet Deposition SO₄

observed SO4 wet deposition (kg/ha)

Correcting CMAQ With Observed (NADP) Precipitation Looks Promising: 69% decrease In RMSEu

Office of Research and Development

National Exposure Research Laboratory, Atmospheric Modeling Division

Procedure to Post-Process CMAQ Wet Deposition Estimates

1) Correct CMAQ Wet Deposition by Observed Precipitation

P_{obs}/P_{cmaq} * Wet Dep_{cmaq}

P_{obs} = gridded PRISM (Parameter-elevation Regressions on Independent Slopes Model) (Cannot use NADP – Inadequate spatial coverage)

Color coding used for scatter plots

3) Add CMAQ Dry Deposition to Get Total

PRISM precipitation data is not in perfect agreement with NADP data, but pretty good

NADP Observed vs. 12km PRISM Precipitation

PRISM precipitation data has same degree of disagreement with CMAQ data as does NADP data

12km PRISM vs. 12km CMAQ Precipitation

Office of Research and Development National Exposure Research Laboratory, Atmospheric Modeling Division

There are similarities and differences In the precipitation fields

2002 12km CMAQ **Annual Total Precipitation (cm)**

2002 12km PRISM Annual Total Precipitation (cm)

Office of Research and Development National Exposure Research Laboratory, Atmospheric Modeling Division

PRISM orographic enhancements are evident

Precipitation Ratio: PRISM/CMAQ

CMAQ SO₄ dep. adjusted with PRISM precipitation improves almost as much as with NADP precipitation: (51% decrease in RMSEu)

Observed vs. Adjusted CMAQ Wet Deposition SO₄

Office of Research and Development National Exposure Research Laboratory, Atmospheric Modeling Division

Resultant Wet Deposition Map for SO₄

CMAQ Wet Deposition SO₄ (kg/ha) BEFORE

Adjusted CMAQ Wet Deposition SO₄ (kg/ha) AFTER / FINAL

													٦.
0	5	10	15	20	25	30	35	40	45	50	55	60	

	Т		Т	Т	Т		Т		Т		Т		T		Т		Т		Т		T		Т	Т	
0		5		10		15		20		25		30		35		40		45	50	55		60			

Model values adjusted with PRISM precipitation.

Office of Research and Development

National Exposure Research Laboratory, Atmospheric Modeling Division

For NO₃ the Procedure Calls For Both A Precipitation and a Bias Adjustment

For NH₄ the Procedure Calls For Both A Precipitation and a Bias Adjustment

Resultant Wet Deposition Fields for NO₃ and NH₄

Adjusted CMAQ Wet Deposition NO₃ (kg/ha)

United States

Agency

Environmental Protection

Adjusted CMAQ Wet Deposition NH₄ (kg/ha)

Model values adjusted with PRISM precipitation and then bias adjusted.

Office of Research and Development National Exposure Research Laboratory, Atmospheric Modeling Division

Model values adjusted with PRISM precipitation and then bias adjusted.

Absolute Error: CMAQ – Observed Regionally Fairly Similar Except for Appalachian Mountains Absolute Error in West Smaller Than In East

Adjusted CMAQ – Observed Wet Dep. SO₄-S (kg-S/ha)

Model values adjusted with **PRISM** precipitation.

Model values adjusted with PRISM precipitation and bias adjusted.

Office of Research and Development National Exposure Research Laboratory, Atmospheric Modeling Division

Distribution of CMAQ Error: Modeled – Observed

5th-25th-Median-75th-95th

Wet Deposition NH₄-N

East West

East West

Base Model

Precip. Adj.

Precip. and Bias Adj

East

West

EAST: 141 NADP monitors WEST: 41 NADP monitors

United States

Agency

Environmental Protection

Office of Research and Development National Exposure Research Laboratory, Atmospheric Modeling Division

East West

What Happens to Dry Deposition?

We expect the interaction between wet and dry deposition to be small

We performed a meteorological model sensitivity, changing the MM5 convective parameterization, thereby changing the precipitation prediction for summer 2002 and then reran CMAQ on the new meteorology to study change in deposition.

We Need to Understand the Sources of Bias

For Example

2002-2006 CMAQ NO_3 Wet Deposition vs. NADP NO₃ Wet shows a consistent under prediction bias in the summer.

BUT, no under-prediction of TNO_3 at surface

We think a major source of this bias is missing lightning NO_x aloft in CMAQ

RMSE

0.30

0.25

(k0,20 kg/ha) 0.15 kg/ha) 0.10 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00

-0.05

-0.10

Median Bias

Median Erro

CDC_PHASE_RUNS NADP NO3_dep for 20020101 to 20061231; State: All; Site: Load_File

2004

2005

5

SUMMARY

- It is possible to post process CMAQ wet deposition with PRISM data to address precipitation error
 - -Errors are reduced most for Sulfur and least for Reduced-Nitrogen
 - Errors can be quantified/estimated and hopefully are tolerable
 - Given the rather similar absolute error across subregions and the ability to allow for orographic corrections, the approach used here may be as good or better than data fusion
- The impact on dry deposition of the wet deposition postprocessing is small and tolerable
- A bias correction is needed in addition to the precipitation adjustment for oxidized-N and reduced-N
 - The sources of bias need to be identified and treated
 - The sources of bias will determine how to project deposition into the future

Acknowledgements

The collaboration with colleagues in AMAD: Wyat Appel Steve Howard

Data and Information from NADP

PRISM data