

Krish Vijayaraghavan, Prakash Karamchandani, Rochelle Balmori and Shu-Yun Chen Atmospheric & Environmental Research, Inc., San Ramon, CA

Christine Wiedinmyer and Hans Friedli National Center for Atmospheric Research, Boulder, CO

> Leonard Levin EPRI, Palo Alto, CA

NADP Technical Meeting, Oct 14-16, 2008 Madison, WI



# **Mercury Emissions from Biomass Fires**

- Wildfires and Prescribed burns
- Hg emissions from emission factors and fire data
- Estimated Total in 2002 = 29 Mg
- 75% Hg(0)
- 25% Hg(p) predominantly PM<sub>2.5</sub>
- Negligible RGM assumed
- Spatial distributions of Hg(0) and Hg(p) fire emissions for this paper were derived from distributions of fire emissions of CO and PM<sub>2.5</sub>, respectively, modeled by Regional Planning Organizations using fire data.



- AMSTERDAM Advanced Modeling System for Transport, Emissions, Reactions and Deposition of Atmospheric Matter
- 3-D multi-pollutant model  $O_3$ , PM, Mercury, other species
- Gas-phase: Hg(0) and RGM
- Particulate: Hg(p) (primary emitted + adsorbed)
- Wet and Dry deposition of Hg(0), RGM and Hg(p)
- Modeling domain USA with 36 km horizontal resolution
- Time Period July 2002
- Two scenarios With and without biomass fire emissions



Atmospheric and Environmental Research, Inc.

del



U.S. Biomass fire Hg emissions in 2002 = 29 Mg (5.7 Mg\* in July) For comparison, annual U.S. anthropogenic Hg ~ 110 Mg

\* July total is for continental U.S. only

### **Simulated Surface Air Concentrations in July 2002** before accounting for Biomass Fires Environmental Research, Inc.

148



25

5

pg/m\*\*3

1

laer

Atmospheric and



Atmospheric and

#### **Relative Change in Surface Air Concentrations** after accounting for Biomass Fires Environmental Research, Inc.



Hg(p)



6



# Simulated Hg Deposition in July 2002 before accounting for Biomass Fires





aei

Atmospheric and





## Performance Statistics for July 2002 at 63 MDN sites

|                                | No Hg<br>emissions<br>from<br>biomass<br>fires | With Hg<br>emissions<br>from<br>biomass<br>fires |
|--------------------------------|------------------------------------------------|--------------------------------------------------|
| Normalized mean                |                                                |                                                  |
| gross error                    | 49%                                            | 48%                                              |
| Normalized mean                |                                                |                                                  |
| bias                           | -17%                                           | -14%                                             |
| Correlation<br>coefficient (r) | 0.48                                           | 0.50                                             |

### State-wide Average Contribution of Biomass Fires to Wet + Dry Mercury Deposition in July 2002 Atmospheric and

Environmental Research, Inc.

er

| State        | Average Contribution |
|--------------|----------------------|
| Oregon       | 8%                   |
| Utah         | 7%                   |
| Wyoming      | 6%                   |
| Colorado     | 6%                   |
| Idaho        | 6%                   |
| New Mexico   | 4%                   |
| Montana      | 4%                   |
| South Dakota | 3%                   |
| Arizona      | 3%                   |
| North Dakota | 3%                   |
| Florida      | 3%                   |
| USA          | 3%                   |



## **State-wide Peak Contribution of Biomass Fires** Atmospheric and to Wet + Dry Mercury Deposition in July 2002

| State      | Peak Contribution |  |
|------------|-------------------|--|
|            | in State          |  |
| Oregon     | 50%               |  |
| Utah       | 42%               |  |
| Colorado   | 36%               |  |
| Wyoming    | 32%               |  |
| New Mexico | 28%               |  |
| California | 22%               |  |
| Idaho      | 21%               |  |
| Arizona    | 21%               |  |
| Florida    | 20%               |  |
| Montana    | 15%               |  |
| Nevada     | 8%                |  |



- Biomass fire emissions comprise mostly Hg(0) and Hg(p).
- Hg emissions from biomass fires in the U.S. were derived from emission factors and fire data for 2002.
- Spatial distributions of Hg(0) and Hg(p) were based on spatial distributions of fire emissions of CO and PM<sub>2.5</sub>.
- Hg fire emissions were incorporated in the multi-pollutant 3-D air quality model AMSTERDAM.
- AMSTERDAM was applied to simulate mercury atmospheric concentrations and deposition in the United States in July 2002.
- Model performance against MDN wet deposition data improved slightly after incorporating Hg emissions from biomass fires.
- The average contribution of biomass fires to Hg deposition in the U.S. is 3%.



- Contributions of biomass fires to Hg deposition are highest in the western U.S. (8% average contribution in Oregon).
- Peak state-wide contributions are up to 50% in the western U.S. (in Oregon) and up to 20% in the Southeast (in Florida).
- These estimates reflect summer-time biomass fire activity. Contributions will be much lower in winter.
- Hg(p) was assumed to be mostly in fine PM. A greater fraction of coarse Hg(p) would increase the contributions of biomass fires to local Hg deposition.
- The speciation of the fire emissions [Hg(0) / Hg(p) / RGM ] is another source of uncertainty.
- It is important to account for the contribution of biomass fire emissions in any mercury modeling study.





• Krish Vijayaraghavan

# AER krish@aer.com