Correspondence between small- and large-scale determinations of ammonia emissions from dairy barns

J. M. Powell, G.A. Broderick and M.D. Casler

USDA-Agriculture Research Service US Dairy Forage Research Center Madison, Wisconsin, USA

T.H. Misselbrook

Inst. Grassland and Environ. Resh. North Wyke, Okehampton Devon EX20 2SB, UK

How much feed nitrogen is converted into milk on 'typical' dairy farms?

15-35%

- Lost as ammonia (20-40%)
- Taken up by plants (20-40%)
- Lost via nitrate leaching (5-15%)
- Lost via denitrification (2-3%)
- Immobilized by soil microorganisms (?)

What We Know

•Ammonia production and loss occur almost immediately in the barn and continue through manure storage and land application.

 This loss of nitrogen greatly reduces the fertilizer value of manure.

Escalating fertilizer N prices

USDA-NASS, 2008

From feed to field: Nitrogen flow on a typical confinement dairy operation

(pounds nitrogen/cow/year)

Enhancement of Manure Nitrogen Use on Dairy Farms

Dairy Rations: Manipulate the amount and form of crude protein (CP) fed to lactating cows

<u>Targeted Impacts</u> (1) maintain high milk production and quality (2) reduced urinary N excretion

Efficiency Gains: 20-25% (1) less ammonia N emitted (2) more manure N available to crops/pasture

Excess feed nitrogen is excreted in urine

Castillo et al., 2000

Enhancement of Manure Nitrogen Use on Dairy Farms

Stall Bedding: Separate feces and urine

<u>Targeted Impacts</u> (1) reduced urease activity, ammonia formation and emission (2) increased ammonium N levels in manure

Efficiency Gains: 10-15%

(1) more urine N conserved and recycled(2) enhances synchrony of manure N release with crop N needs Correspondence between small- and large-scale determinations of ammonia emissions from dairy barns

Lab chambers

•Barn chambers

Lasers

L_{g NH₃/cow/d J}

g NH₃/m²/d

Laboratory chamber system To measure relative ammonia emissions

Laboratory chamber system Impact of dietary CP level on ammonia emissions from manure applied to barn floor

Laboratory chamber system Impact of dietary CP level and forage type on ammonia emissions from manure applied to soil

Trial type	Trial	Slurry type	
	components		
A STATE OF	A SALE MILLER	Fresh	Stored
		% applied N	volatilized
CP level	13.6%	31b	12b
	19.4%	68a	29a
Forage	Alfalfa	31a	30a
tannin type	BF-T-Low	33a	23b
	BF-T-High	25b	19b

Lab chamber – Bedding impacts

Misselbrook et al. 2005

Larger Scale Estimates Ammonia N Emissions from Dairy Barns

Scaling-up: From Laboratory to In-barn Measurements

Ammonia emissions from barn chambers compared to other studies

Barn chamber nitrogen balances

Variable	Trial season		
	Spring	Early-Fall	Winter
INPUTS	g N chamber ⁻¹ d ⁻¹		
Feed consumed	2964	2433	2416
Bedding	103	110	94
OUTPUTS			
Milk	775	736	731
Manure removed	1933	1331	1495
Live weight gain	41	188	71
Ammonia loss	83	34	27
		— % —	
BALANCE	93	91	95

Barn chambers: Actual vs. predicted urinary N

Use of Lasers to Measure Ammonia Emissions

Correspondence between small- and large-scale determinations of ammonia emissions from dairy barns

NH3 g/cow/d

Summary Achievable reductions in ammonia emissions Impact of impresent on reductions in ammonia emission

Management practice	Mechanism for decrease ammonia loss	Decrease in ammonia loss (%)
Remove excess and/or feed balanced dietary protein	Decrease N output in urine	10 to 15
Cover manure storage	Decrease ammonia escape	20 to 30
Incorporate or inject manure	Reduce ammonia production and loss	30 to 50

Implementation of these management practices has the potential to reduce ammonia N loss from about 115 to 30-40 lbs/cow/yr, a 65-70% reduction.

