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Greenhouse Gas Sources l Net Greenhouse Gas Fluxes I
Use DAYCENT to model the net soil GHG emissions of bioenergy

cropping systems in Pennsylvania for inclusion in a full carbon

INTRODUCTION

Bioenergy cropping systems could help offset greenhouse gas (GHG)

emigsions, but quantifinng that offset 1s complex. Bioenergy crops offset N.O emissions were converted to CO, equivalents

based on it being about a 300 times more potent
greenhouse gas. Switchgrass had lower N,O
emissions than other cropping systems relative to
the amount of N applied.

cycle analysis (farm inputs and operations, displaced fossil fuels,
soil GHG fluxes).

Greenhouse Gas Sinks

Displaced gasoline
values (an
estimation of energy
security impacts)
are based on fuel
economy of
gasoline compared
with ethanol, total
emissions of CO.,

CH,, and N,O
during gasoline life
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Reduction in GHGs by using biofuels

biomass and so1l and by supplying energy and useful co-products, but they compared to fossil fuels

also emit mtrous oxide (N,O) and other GHG’s. Growing the crops
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requires energy (e.g., to operate farm machinery, produce mputs such as
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fertilizer), and so does converting the harvested product to usable fuels
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used to calculate crop vields and so1l GHG fluxes. Model results were
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included 1n a full life cycle analysis to estimate net GHG emissions for
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several bioenergy cropping systems in Pennsylvania
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CO.-C equivalents based on emissions from fossil
fuel energy requirement of N fertilizer production
(West and Marland, 2002). N fertilizer application
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