

Krish Vijayaraghavan, Prakash Karamchandani, Rochelle Balmori and Christian Seigneur Atmospheric & Environmental Research, Inc., San Ramon, CA

> Leonard Levin EPRI, Palo Alto, CA

John J. Jansen Southern Company, Birmingham, AL

NADP Technical Meeting, Sep 10-12, 2007 Boulder, CO

Traditional Modeling Approaches for Atmospheric Mercury Deposition

Puff Model

(source: epa.gov and www.colorado.edu)

Examples: ISC, AERMOD, ROME, CALPUFF, SCICHEM etc.

Examples: CMAQ, TEAM, MADRID, REMSAD, CAMx etc. 2

Eulerian Gridded Model

Why Use Plume-in-Grid Approach?

<figure>

Fig. Top-down view of plumes from five point sources (hypothetical case)

Source: Godowitch, 2004

Limitations of Purely Grid-Based Approach

- Artificial dilution of stack emissions
- Unrealistic near-stack plume concentrations
- Incorrect representation of plume chemistry and transport

Using a plume model embedded in a grid model helps overcome these limitations. ³

Atmospheric Chemistry of Mercury

4

Mercury Chemistry in Power Plant Plumes

Schematic not to scale

- Evidence of Hg^{II} reduction in power plant plumes from measurements and modeling (Edgerton et al., ES&T, 2006; Lohman et al., ES&T, 2006)
 - Reduction of Hg^{II} by SO₂ (possibly via heterogeneous reaction on particles) is compatible with global Hg cycling budget (Seigneur et al., *J. Geophys. Res.*, 2006).
 - Rate constant for Hg^{II} reduction by SO_2 was derived from nine plume events and used in modeling.

Plume-in-grid Model Description: CMAQ-MADRID-APT

- EPA's CMAQ as host model
- MADRID: Model of Aerosol Dynamics, Reaction, Ionization and Dissolution
- APT: Advanced Plume Treatment with embedded plume model SCICHEM (state-of-the science treatment of stack plumes at the sub-grid scale)
- Mercury treatment in grid and plumes
- Consistent treatments for chemical transformations of all species in the host model and the embedded plume model
- Freely available to the public at http://www.cmascenter.org

Modeling Approach

- Plume-in-grid Model CMAQ-MADRID-APT v. 4.5.1
- Time period 2001
- Modeling grid N. America domain at 36 km horizontal resolution and 14 vertical levels
- Meteorology MM5-driven from EPA
- Initial and boundary conditions –from EPA using GEOS-Chem output (10 day model spinup for each quarter)
- Mercury emissions EPA 2001 inventory based on 1999 NEI with updates by EPA to waste incinerator emissions based on MACT
- Emissions of other species EPA 2001 inventory based on 1999 NEI

ae

Atmospheric and

- 36 km grid resolution
- 30 large power plants with APT

Simulated Hg Wet Deposition in 2001

Environmental Research, Inc.

MDN Hg Wet Deposition in 2001

Comparison of Hg Wet Deposition from 2001 with MDN data

Bias = 84% Error = 84%

20

25

30

35

+ 2

 $R^2 = 0.7$

Precipitation in 2001

Simulated Hg Dry Deposition in 2001

microg/m2¹ January 1,2001 0:00:00 Min= 2 at (24,92), Max= 114 at (98,50) * Preliminary results

Impact of Advanced Plume Treatment on Simulated Hg "Dry + Wet" Deposition

Change (%) in annual Hg dry + wet deposition due to plume treatment

Conclusions

16

- A new plume-in-grid modeling system was applied to simulate mercury deposition in the United States in 2001.
- A rate constant for Hg^{II} reduction by SO₂ was derived from plume measurements and used in both gridded and plume-in-grid modeling.
- Thirty large coal-fired power plants were selected for advanced plume treatment (APT).
- Model performance (r² and error) w.r.t MDN wet deposition data improved with APT.
- The model still shows a strong positive bias which is likely due to a combination of insufficient reduction of Hg^{II} to Hg⁰ and biased precipitation.
- The use of APT results in 3-40% decreases in annual mercury deposition compared to a purely gridded approach.

Questions ?

• Krish Vijayaraghavan

AER

krish@aer.com