Biogeochemical cycling of Hg and methyl Hg in Great Smoky Mountains National Park

Suzanne Fisher, Tennessee Valley Authority

National Atmospheric Deposition Program Annual Fall Meeting September 12, 2007

Approach and Objectives

- •Watershed budget of mercury
- •Measure total and methyl Hg in throughfall, leaf litter, and soils in conjunction with the current wet deposition sampled by the Mercury Deposition Network
- Measure total and methyl Hg and quantify dissolved phase at two elevations
- Measure watershed components such as sulfate, total suspended solids, and dissolved organic carbon
- •Event sampling-storm and snow

Noland Divide- 5,742 ft

Clingmans Dome, TN – 6,643 ft

Watershed budget of mercury

Purpose of Study

- Is it really high in the Smokies?
- Weekly total mercury in wet deposition at Clingmans Dome since 2002 as part of MDN, known as TN-12.
- Since 2002, seasonal (May-October) concentration average of 9.10 ng/L; seasonal deposition average of 4.5 µg/m²
- Weekly methyl mercury (wet deposition) at TN-12 for 2006 and 2007
- Dry and cloud deposition of Hg also contributes to the total deposition the ecosystem receives. These aren't being measured...
- Understand complex cycling-terrestrial systems (lag time after deposition, organic matter form binding complexes, amount of sulfate and total suspended solids influence).

Nearby Sources of Mercury to Great Smoky Mountains National Park

Total mercury at Clingmans Dome, GSMNP July, 2006

MDN Preliminary Precipitation Summary: TN12

Clingmans Dome TN-12 Methyl Mercury Concentration 2006

MHg Deposition Precip final Precip MHg Conc

Total versus Methyl Mercury in GSMNP July, 2006

Background Information

Sampling sites for mercury analysis in Great Smoky Mountains National Park

Proposed study sites for measuring throughfall, litterfall, soil, and streams.

Clingmans Dome, 6,643 ft

•Clingmans Dome and upper portion of Noland Creek are dominated by spruce-fir and have rich, organic soils and receive a high amount of cloud deposition.

•Lower portion in Bryson City is in mixed hardwood.

Upper Noland Creek

Image © 2007 DigitalGlobe Image © 2007 TerraMetrics © 2007 Europa Technologies

Clingmans E

Deposition Collection

- •Monthly analysis (May-October)
- •Total and methyl mercury

•Sulfate

- •Throughfall and 3 rain gauges dispersed per site to capture variability
- •Surface soil (organic horizon) and soil solution (6", 12", and 24")
- •Litterfall traps (two at each site)

Canopy throughfall

Open-site throughfall

Soil lysimeters

Litterfall

Wet deposition MDN, TN-12

Stream Sampling-Noland Creek

- Monthly analysis (May-October)
- Storm event sampling (seasonal)
- Total and methyl mercury
- Dissolved organic carbon
- Dissolved mercury
- Sulfate
- Total suspended solids
- pH, temperature •Stream flow and height

Methodology

- Clean hands/dirty hands for sampling
- Double-bagged material
- Throughfall-acid washed glass funnels with teflon tubing and amber acid washed collection bottles, ~10ml of dilute HCl added as preservative
- Stream collection-laboratory prepares bottles, triple rinsed with stream water, shipped overnight on ice to laboratory
- Field blanks, spikes, duplicates/triplicates, use laboratory DI water

Chemical Analyses

- Total Hg-oxidize with BrCl overnight and analyzed with CVAFS
- Methyl Hg-preserved with 0.4% HCl, distilled, and analyzed with CVAFS
- Sulfate-ion chromotography (EPA 300)
- Dissolved organic carbon (EPA 415.1)

Preliminary Results

- Massive drought in Tennessee! Difficulty in catching storms
- Very few soil solution samples
- Not enough sample volume from throughfall sample for both total and methyl Hg measures!
- Minor bear attacks-lost one litterfall trap and replaced throughfall

Throughfall Samples

Site	Collector	Total Hg Dep	Ratio of TF to open	
		ng/m²		
CD	TF1	1900	38	
	TF2	145	2.9	
	TFOP	50		
ND	TF1	240	2.4	
	TFOP	180		
BYS	TF1	690		
	TF2	403		
	TF3	2050		

- Variability in throughfall collectors
- Ratio of inputs of throughfall to open precipitation is 2.65, slightly higher than in literature ~1.8
- Rainfall amounts were higher at lower elevation-this could influence differences between the sites
- Total wet deposition for June 2007=1248 ng/m²

Methyl Hg in throughfall

		Total Hg (ng/L)	MeHg (ng/L)	Methyl Hg contribution
ND	TF1	31	0.132	0.004%
BYS	TF2	85.5	0.253	0.003%

Litterfall

Data for June:

Litterfall	Date	Sample 1 (ng/g)	Sample 2 (ng/g)	Avg (ng/g)	Stn Dev
CD	06/14/07	20	29.4	24.7	6.6
ND	06/21/07	38.4	37.2	37.8	0.8
BYS	07/11/07	11.7	216	113.85	144.5

Comparison of throughfall and litter

	open precip (ng/l)	Avg. TF (ng/l)	Avg. litter (ng/g)
Clingmans	8.23	23.7	24.7
Noland	13	31	37.8
Bryson		115	113.85

•Studies have shown higher inputs of Hg in litterfall than precipitation or throughfall

Surface soils

Soil	Date	Tot. Hg (ng/g)	Sulfate (mg/kg)	Methyl Hg (ng/g)
Clingmans	06/14/07	387	337	
Noland	06/21/07	318	483	
Bryson	07/11/07	64.8	-	1.38

•Soil is the greatest pool of Hg

•Higher elevation soils contain higher amounts of total mercury

Soil Solution

Solution	Date	Tot Hg (ng/L) 6"	12"	24"
Clingmans	06/14/07	22.1	33	19.4
Noland	06/21/07	20.6	0	
Bryson	07/11/07		•	4.68

•Hg in soil solution has been shown in studies to decrease in depth. Our results are inconclusive thus far.

•Soil solution concentrations are lower than surface soils here •Lack of rainfall from drought has made it hard to compare depth Clingman/Noland samples are higher than Hg in solution than those at Walker Branch,TN at 5 ng/L at 2" (Lindberg, 1996)

Stream chemistry

		Tot Hg (ng/L)	Dissolved (ng/g)	Sulfate (mg/L)	DOC (mg/L)
ND	06/21/2007	1.4			
BYS	07/11/2007	6.5	1.67	0.08	2.04
BYS	07/11/2007	7.16	1.66		

•Contracts not set up in time to run sulfate or DOC for Noland in June...

•Lower elevation sites= higher concentrations

•Lower Noland Creek (Bryson) is mostly particulate-bound

•Collected small amount of storm sample from lower Noland Creek, concentration =38 ng/L

Stream flow and height

"Frozen Precipitation" in bulk collectors

Sample ID	Collection Date	Overnight Temp (F)	Air Temp (F)	Total Hg Conc (ng/g)	Total Deposition (ng/m2)
CD1	04/03/2007	36	61.8	35.8	4686.22
CD2	04/03/2007	36	61.8	22.3	3331.62
ND2	04/03/2007	23	64.9	5.16	689
ND1	05/02/2007	46	61.8	5.64	981.4
ND2	05/02/2007	46	50	8.96	1639.7
ELK	03/08/2007	27	50	3.64	543.8*
*weekly amount					

•Little snow, mostly ice/snow that thawed during the day

•Clingmans Dome has higher concentrations in frozen precipitation

Summary

- Throughfall concentrations are higher than open precipitation.
- Litterall concentrations are only slightly higher than throughfall concentrations.
- Highest elevation site has the highest concentration of total Hg in soil, but not enough data available to determine vertical profile of Hg in soil solution.
- Only one sample shows that particulate phase of mercury is greater than dissolved.
- Need more data to run correlations
- Still collecting data throughout September/October with plans to continue next year.
- Pray for rain!!

Acknowledgments

- Frontier Geosciences (Matt Gomes)
- TVA (Tom Burnett, Ray Valente, Bill Parkhurst, Mark Wolfe, Tim Green)
- National Park Service (Jim Renfro)
- University of Tennessee (John Schwartz)

