Wet plus Dry Deposition of Atmospheric Hgmin the SE U.S.

Mississippi

Georgia

NADP Technical Meeting Sept. 10-12, 2007 Boulder, CO, USA

© 2006 Europa Technologies Image © 2006 TerraMetrics

Pointer lat 32.188919° Ion -86.492928°

Streaming ||||||||| 100%

Eye alt 665.54 km

Google

Outline

- Routine Measurements and Deposition Estimates
- Coarse Particle Hg
- Further Thoughts

SEARCH Network Hg-related measurements

SEARCH Atmospheric Hg Measurements

~99%

Hg⁰ - Tekran 2537A

- 5 minute averages (every other hour)
- Gold trap pre-concentration
- CVAFS detection

RGM - Tekran 1130 Module

- 60 minute average (every other hour)
- KCI thermal annular denuder
- Desorption at 500C

• Hg_P - Tekran 1135 Module

- 60 minute average (every other hour)
- Impactor @ inlet removes particles >2.5 micron
- Quartz filter (downstream of impactor)
- Desorption at 800C

<mark>≤1%</mark>

≤1%

Tekran Configuration

Tekran Modifications Made in SEARCH

- Nafion drier (keep water out of detector)
- Soda lime trap (keep reactive gases out of detector)
- Log flows (confirm proper operation and calculations)
- Log temperatures (confirm operation)

Data Verification Activities

- Hg⁰ injection onto 2537A traps 100 +/- 2% recovery
- Method of Addition Hg⁰ injection at inlet 100 +/-5% recovery, no fictive RGM or Hg_{PM2.5}
- Parallel denuder/filter sampling RGM 100 +/- 10%, Hg_{PM2.5} 88 +/- 20%
- Spiked denuder experiments (RGM) HgCl₂ recoveries 56-167% (n=20)
- Automated and Manual Data review

Raw 5-minute Time Series

Supporting SEARCH Measurements

- Discrete Particles and Gases (24-hour)
 - PM_{2.5} and PM₁₀ (filter-based mass, speciation)
 - NH₃ (annular denuder)
- Continuous Particles (1-min to 1-hr)
 - PM2.5, TC, BC, NH₄⁺, NO₃⁻, SO₄²⁻
- Trace Gases (1-min)
 - O₃, NO, NO₂, NOy, HNO₃, SO₂, CO
- Meteorology and Visibility (1-min)
 - WS, WD, T, RH, BP, SR, rainfall, Bsp (dry)

Urban Mercury Measurements Jefferson Street 2/8-9/02

CO and Hg⁰ track each other during major excursions

Hg(0) vs. CO regression slopes Nocturnal events @ JST

Month	Lower	Upper	
(2002)	95% CI	95% CI	r-sq.
January	0.24	0.54	0.51
February	0.47	0.58	0.62
March	0.57	0.67	0.78
April	1.47	1.69	0.68
May	1.63	1.91	0.71
June	2.36	2.71	0.73
October	0.96	1.15	0.68
November	0.37	0.46	0.66
December	0.60	0.68	0.78

60-minute SO₂ and Hg 4/28/06 Event - OLF

Summary of SEARCH 1-Hr Hg Measurements

Site	Year	Hg⁰ (pg/m³)		RGM (pg/m³)		Hg _{PM2.5} (pg/m³)	
		mean	max.	mean	max.	mean	max.
OLF, FL	2004	1490	2440	4.8	182	1.4	48
	2005	1470	2850	2.7	183	1.3	38
	2006	1580	2740	4.0	127	2.5	49
BHM, AL	2004	2490	35,900	56	8560	10.3#	185#
	2005	2420	130,200	77	13,700	24.9	2410
	2006	2570	165,400	82	9210	31.6	2940
YRK, GA	2002/3	1566	9470	4.5	169	nm	nm
JST, GA	2002/3	1917	8400	6.1	288	nm	nm

partial year

All 3 forms of Hg significantly elevated at BHM; Hg⁰ elevated at JST

Hg Species by WD at BHM - 2006

Diurnal Pattern of Hg Species at OLF 2006

Diurnal Pattern of Hg Species at BHM 2006

Dry Deposition Estimates

Unlike wet deposition, dry deposition is difficult to measure. However, dry deposition can be estimated based on analogy with HNO_3 (for RGM) and $PM_{2.5}$ (for $Hg_{PM2.5}$).

No simple analogy for Hg⁰

Dry deposition (DD) calculation: $DD = \Sigma C_i x V_{di}$, where C_i = hourly concentration and V_{di} = hourly deposition velocity

Dry Deposition Resistance Models $Flux = C_i / \Sigma r_{i,} = C_i \times V_{di}$

Vd exhibits strong diurnal patterns; therefore, ΣC'xVd' NE 0 and it is necessary to measure RGM and Hg_P with high time resolution.

Measured Wet and Estimated Dry Deposition (2005)

	Wet	Dry		
	(µg/m²)	(µg	/m²)	
Site	Total-Hg	Нg _Р	RGM	
OLF	18.5	0.1-0.2	1.1-2.2	
BHM	24.7	0.8-1.6	24-48	

Wet Deposition >> Dry deposition at OLF (non-industrial) but comparable at BHM (industrial)

Caveats: 1) Dry Deposition estimate does not include Hg⁰ 2) Dry deposition estimate for Hg_P includes PM_{2.5}

OLF Experiments

Dual Tekrans operated synchronously and asynchronously with various inlet configurations.

Questions addressed:

What is measurement precision?
What is the size distribution of Hg_P?

Collocation Experiments at OLF

P = primary Tekran, C = colo Tekran

	HgP		RGM	
	pg/m³		pg/m ³	
Inlets	Р	С	Р	С
PM _{2.5} /PM _{2.5}	1.4	1.8	5.4	4.9
PM _{2.5} /TSP	2.3	6.9	4.4	5.0
PM _{2.5} /PM _{2.5}	1.9	1.8	5.4	4.9
PM _{2.5} /PM ₁₀	1.6	4.5	3.0	3.4

1) Measurement precision +/- 10% for RGM, +/- 25% for Hg_P 2) Roughly 2-3 times as much Hg_P in PM₁₀ and TSP as PM_{2.5} 3) RGM may be contaminated by Hg_P if PM_{2.5} inlet removed

Further Thoughts

- Measurement technology is approaching maturity and we are rapidly moving toward a national network for measuring atmospheric Hg (and estimating dry fluxes). We should pause to:
 - Recognize that, except for Hg⁰, we are measuring "forms" not "species" (if not, we underestimate uncertainties).
 - For example, if we believe Hg_{PM2.5} is important, then we should investigate size distributions (pilot studies)
 - Think about reporting units (ng/m³ at 0°C and 1 atm. potentially unrepresentative). Some options are:
 - Use current units, but always report ambient T and BP
 - Use mixing ratios
 - Consider more conventional calibration using bottled Hg^{0.} Some advantages/disadvantages:
 - Automated calibrations (displacement and method of additions)
 - Remote actuation and adjustment
 - Cost and development effort/time
 - Consider whether thermography can (or should) be used to learn more about RGM and Hg_{PM2.5}?

Thermography of Hg_{PM2.5} and RGM

Summary and Conclusions

- SEARCH joined MDN and initiated atmospheric Hg measurements in 2000/2001. Plans are to continue through 2010.
- Routine, continuous measurements of atmospheric Hg⁰, RGM and Hg_{PM2.5} are obtainable with current technology, but require significant oversight.
- Hg data for 4 southeastern sites shows highly elevated concentrations (all 3 forms) at an industrial site and moderately elevated concentrations (Hg⁰ only) at an urban site, relative to rural/suburban sites.
- Based on 2005 data, estimated DD of RGM and Hg_{PM2.5} < WD at rural/suburban sites, but may be comparable at industrial sites (Hg⁰ deposition unknown, but likely highly variable in space and time).
- Inlet experiments show roughly 3 times higher Hg_P in PM₁₀ and TSP than PM_{2.5}. Coarse Hg_P will contribute to dry deposition and may provide clues to atmospheric Hg processing.
- The prospect of a nationwide Hg network is exciting, but we need to continue to think through details of the measurement and reporting process.

Acknowledgements

Funding for SEARCH is provided by EPRI and Southern Company

Further information about SEARCH can be obtained at:

www.atmospheric-research.com