

RECENT DEVELOPMENTS IN DETERMINING CRITICAL LOADS FOR SULPHUR AND NITROGEN DEPOSITION IN WESTERN CANADA

Silvina Carou Atmospheric Science Assessment & Integration Environment Canada

> Julian Aherne (Trent U.) Shaun Watmough (Trent U.) Dean Jeffries (EC)

NADP Science Meeting, Boulder, CO September 12, 2007

The Critical Load and Acid Rain Policy

Empirical aquatic CLs (SO₄)

1990 Science Assessment CLs <8 - >20 kg SO₄/ha/yr 1997 Science Assessment

2004 Science Assessment New forest soil + lake CLs (S+N) bkd - >1000 eq/ha/yr

2006 CLs for western Canada CLs (S+N) <250- >2000 eq/ha/yr 1983 Target Load 20 kg SO₄/ha/yr 1985 Eastern Canada Acid Rain Program

1991 Canada-U.S. Air Quality Agreement

1998 Canada-wide Acid Rain Strategy

1^o Goal → Reduce acid deposition below the CL across Canada

2005 Review of The Strategy

 Develop strategies to achieve further reductions

2004 Canadian Acid Deposition Science Assessment Aquatic and Terrestrial CLs (eq/ha/yr)

ent Environnement Canada

2004 Canadian Acid Deposition Science Assessment Combined Exceedances of Aquatic and Terrestrial CLs (eq/ha/yr)

~0.5 million km²

~1.8 million km²

Information in western Canada too limited to adequately assess risk.

Potential for Acidification Damage in Western Canada

Distribution

200² CAC SO₂ Emissions (kg/grid cell/yr)

Bedrock Sensitivity

Development of CLs for Forest Soils in Western Canada

Steady-state Mass Balance Model Approach

- Input-output balance of processes affecting soil acidification
- Critical limit → base cation leaching rate that will protect sensitive forest vegetation

CLs (S+N) for Forest Soils in Saskatchewan and Manitoba

Aherne and Watmough (2006) - Final report available at http://www.ccme.ca/ourwork/air.html?category_id=31

CL Exceedance (S+N) for Forest Soils in Saskatchewan and Manitoba

 Exceedances occur in ~7% of mapped soils in MB and and ~2% in SK.

Aherne and Watmough (2006) - Final report available at http://www.ccme.ca/ourwork/air.html?category_id=31

Development of CLs for <u>Lakes</u> in Manitoba Steady-state Water Chemistry Approach

 Critical limit → Acid Neutralizing Capacity of 40 µeq/L (threshold required to sustain healthy aquatic ecosystems).

$$CL(A) = BC_{0}^{*} - ANC_{limit} = Q + ([BC^{*}]_{0} - [ANC]_{limit})$$

base cation flux
(weathering) runoff

- ANC_{limit} for lakes with high organic acids = 10+10.2/3*DOC
- Based on water chemistry data from recent survey in NW Manitoba.
- Exceedances estimated for monitored and modelled total S and N deposition.
- Only numerical estimates presented at this time (no map).

Aquatic CLs and Exceedances for Manitoba

Manitoba Lake Survey: SSWC Critical Loads (eq/ha/yr) and Number of Lakes Exceeded

	5 th / 50 th Percentile CLs			Number of Lakes Exceeded*	
	"Regular" ANC _{limit}	ANC _{limit} for Or Waters	rg.	"Regular" ANC _{limit}	ANC _{limit} for Org. Waters
SSA (n=30)	176 / 551	137 / 520		0	0
SSB (n=30)	197 / 497	157 / 492		0	0
SSC (n=40)	98 / 224	118 / 221	N	3	2
SSD (n=52)	58 / 203	55 / 190		5	4

Number consistently exceeded using 3 deposition estimates, i.e., map interpolation, AURAMS and RELAD.

(Dean Jeffries, EC, personal communication)

Terrestrial CL and Exceedance of Nutrient N (Eutrophication)

Ongoing CL Projects

- Steady-state and <u>dynamic</u> CLs and exceedances (S+N) for lakes and forest soils in the Georgia Basin (British Columbia)
 - Work in support of Georgia Basin Action Plan
 - Contact: Pat Shaw (EC-PYR); Partners: Trent U, UNB, NRCan, UBC
 - Completion date: March 2008
- CLs and exceedances (S+N) for BC, SK, MB and eastern Canada based on modelled deposition
 - Work in support of Sulphur Emission Control Area (SECA) initiative
 - Contact: Joanne Bellamy (EC), Partners: Trent U, UNB, QC MNR
 - Completion date: March 2008
- Steady-state and dynamic CLs and exceedances (S+N) for lakes and forest soils in Fort McMurray (Alberta)
 - Work in support of Alberta's SOx and NOx Management Framework
 - Multi-agency project

Thank you

Jasper National Park, Alberta