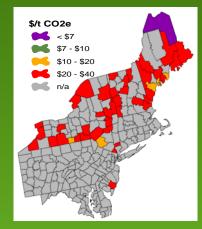
Land Use Carbon Mitigation Options in the Northeastern US


Sarah Walker, Brent Sohngen, Sean Grimland, Jon Winsten, and Sandra Brown Winrock International swalker@winrock.org

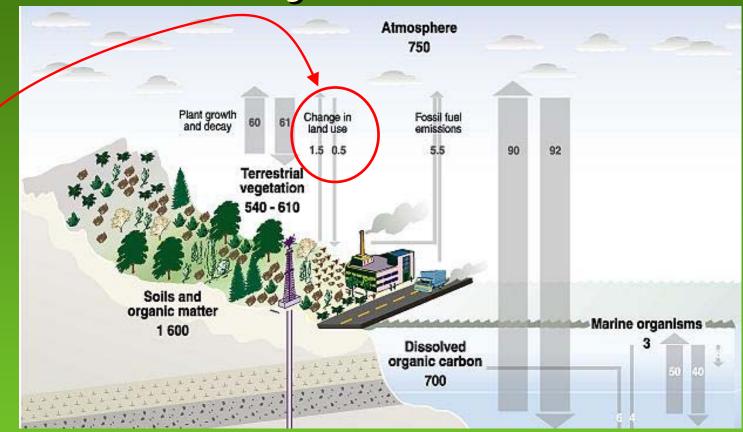
Winrock International – Ecosystem Services

Regional and project scale carbon methodology and monitoring development

Regional scale assessments

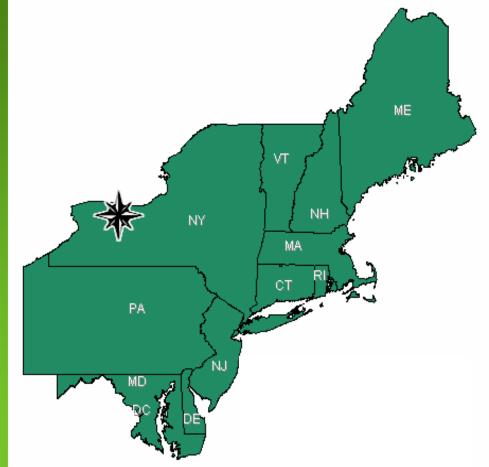
Spatial carbon emission projection modeling

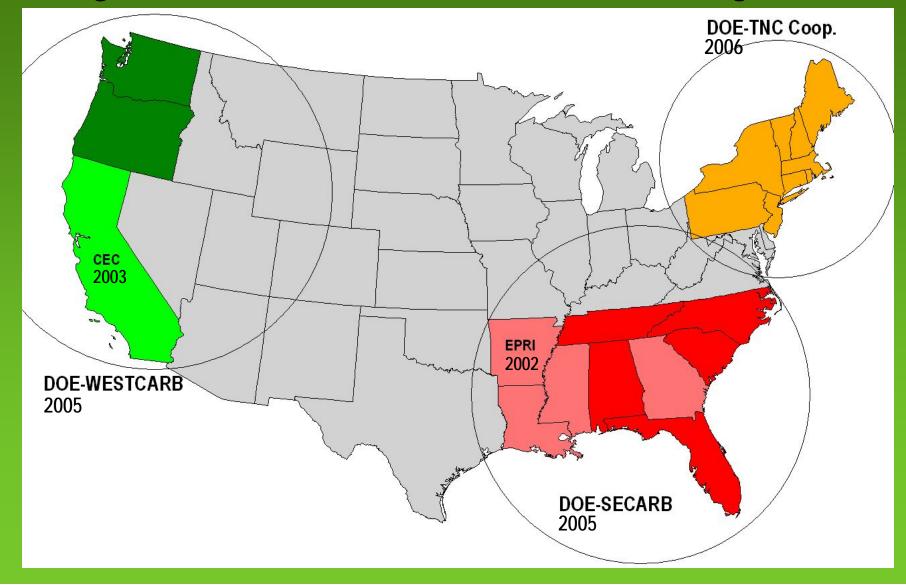
Advanced monitoring techniques – aerial imagery


Biof Winnock

Acknowledgements

- Project support from the US DOE, EPA, EPRI, and TNC
- Winrock team: Sarah Walker, Tim Pearson, Sean Grimland, Jon Winsten, John Kadyszewski
- Brent Sohngen of OSU
- Neil Sampson of The Sampson Group
 Bill Stanley and David Shoch of TNC


Global Carbon Cycle


Study examined potential carbon mitigation through altering land management to increase sequestration and reduce emissions

Terrestrial Carbon Research:

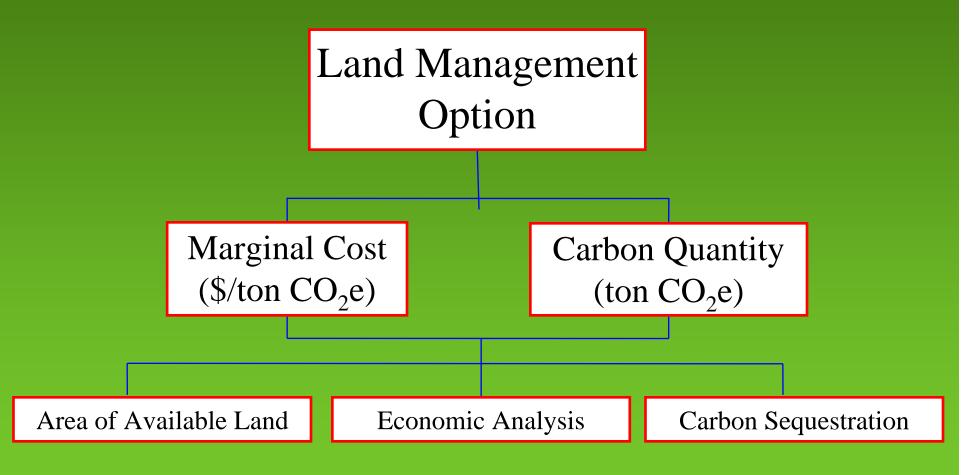
- Study covered eleven north east states
- Examines the potential in this large land area for carbon mitigation by changing current land use practices

Terrestrial carbon mitigation potential analyzed across much of country:

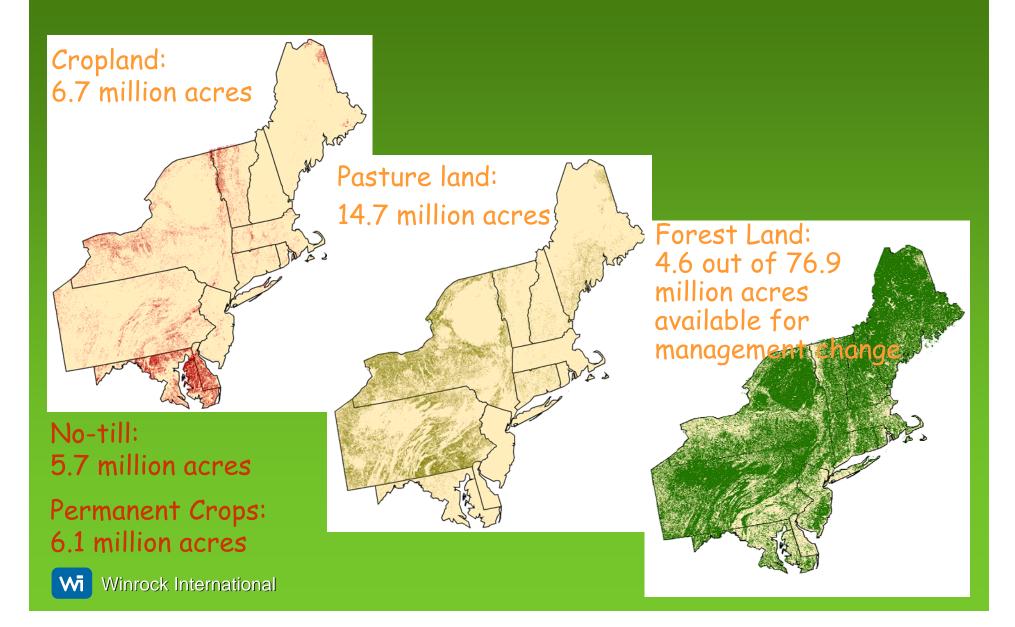
Overall questions addressed:

- What options are there for changing land use and management practices on the land?
- What is potential quantity of carbon sequestered and where for each option?
- What is the <u>price</u>? (i.e. economic potential)

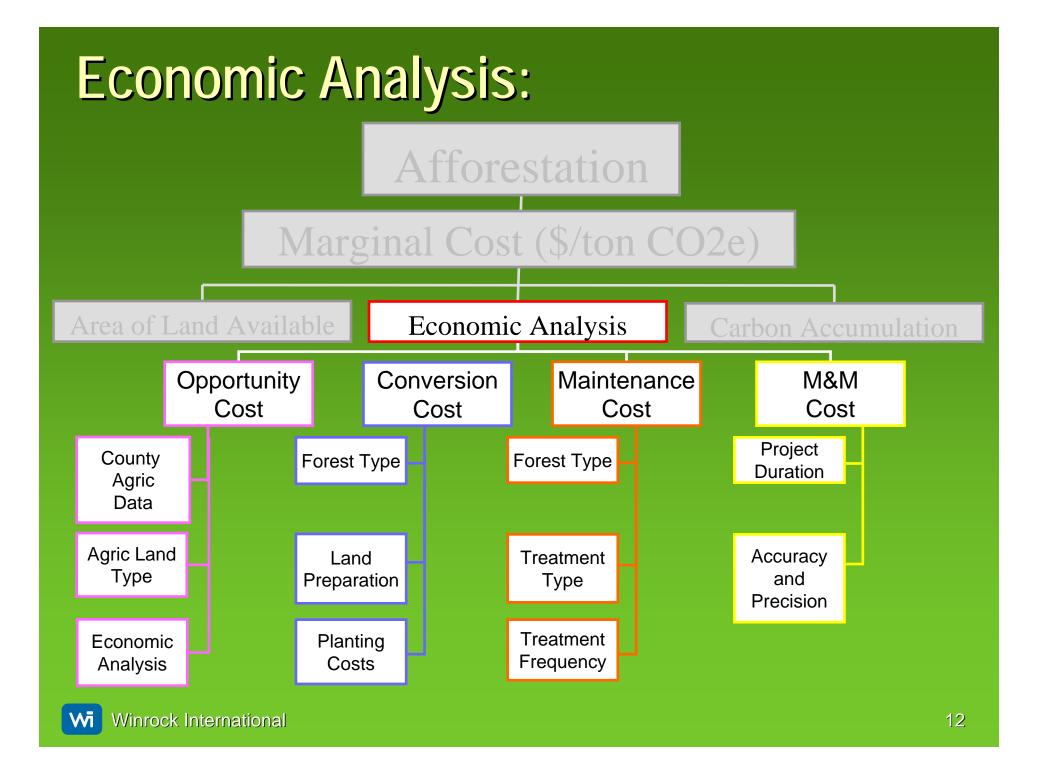
Land management options examined:

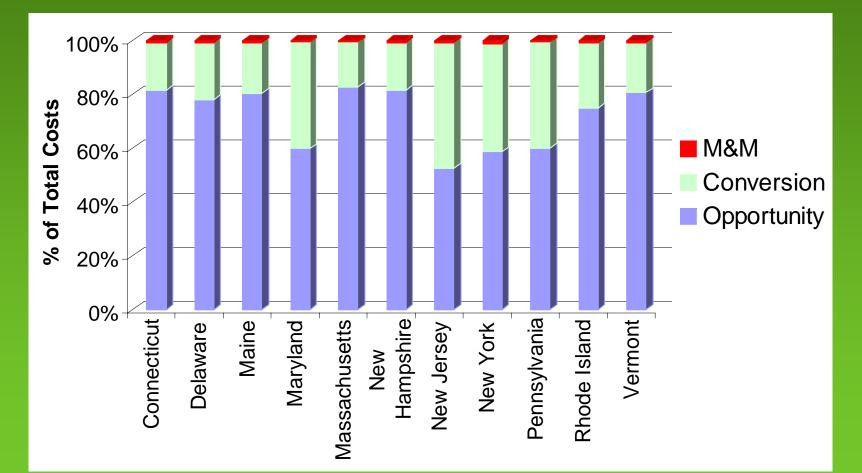

Agricultural lands:

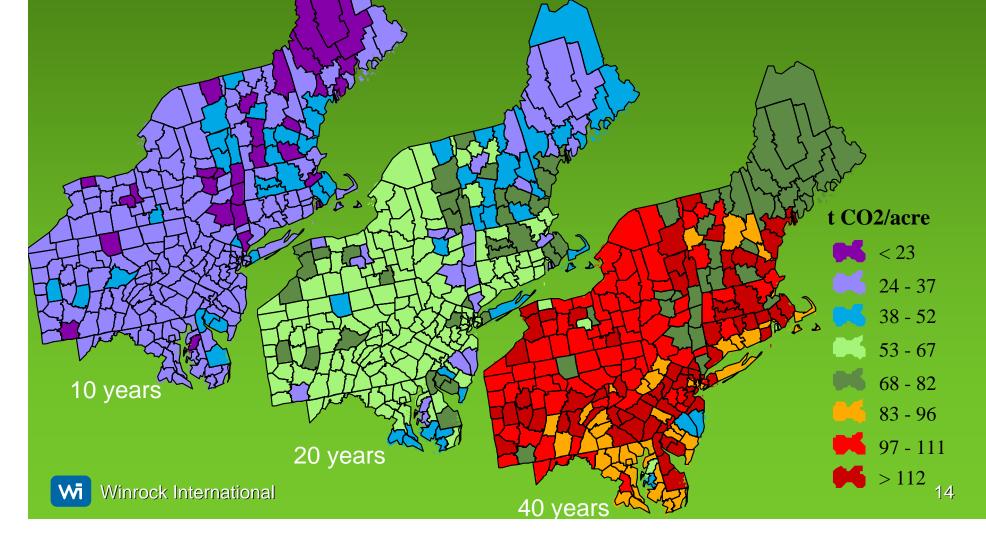
- Afforestation of croplands
- Afforestation of grazing lands
- Conversion to no-till
- Conversion to permanent vegetation crops

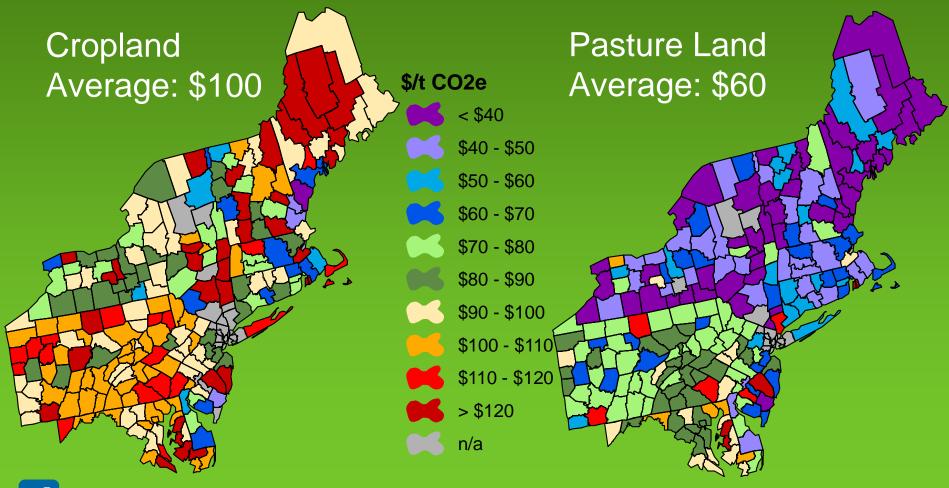

Forest Lands:

- Improving stocking conditions in poorly stocked stands
- Extending the rotation age in softwood forests
- Enhancing riparian zones along streams

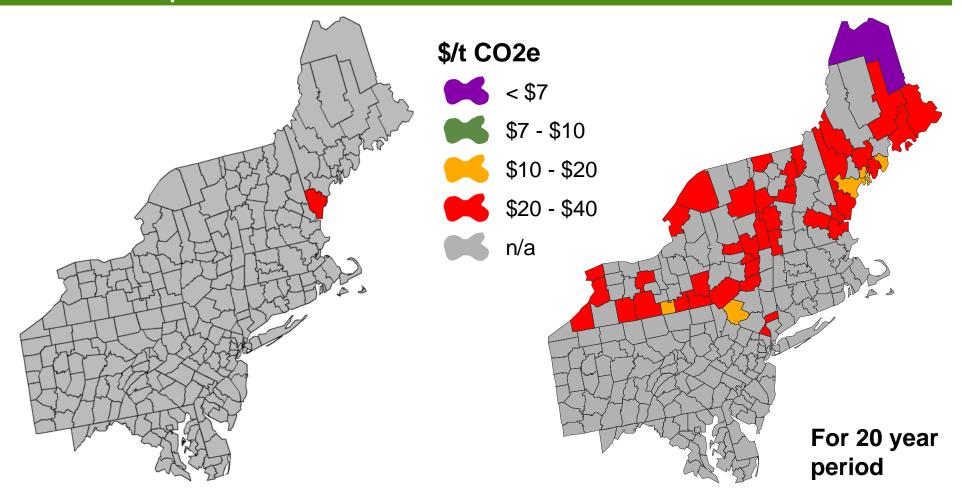

Overview of Approach for each land management option:

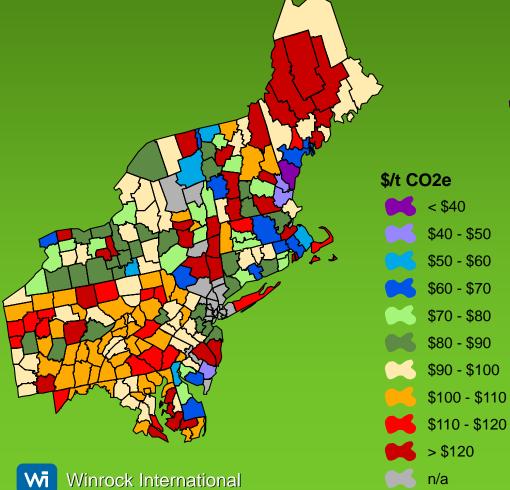

Area of land available in region:

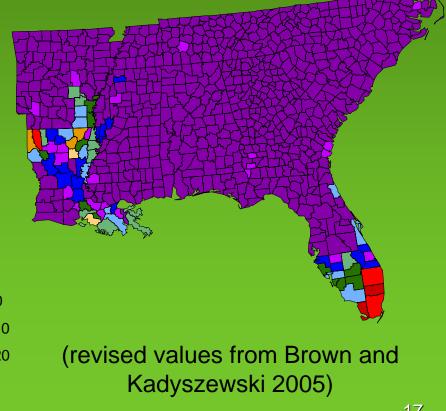

Afforestation of agricultural lands


Economic Analysis: Contribution of each cost component to total costs for 20 year period

Carbon accumulation: Potential carbon sequestration per area of land afforested

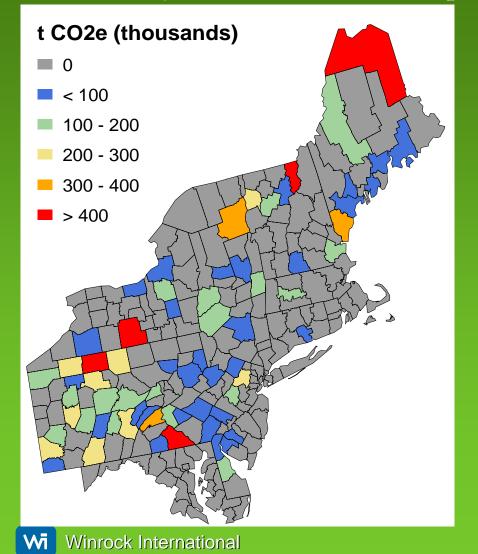

Marginal Carbon Costs: 20 year period


Counties where afforestation is economically attractive at lower prices:

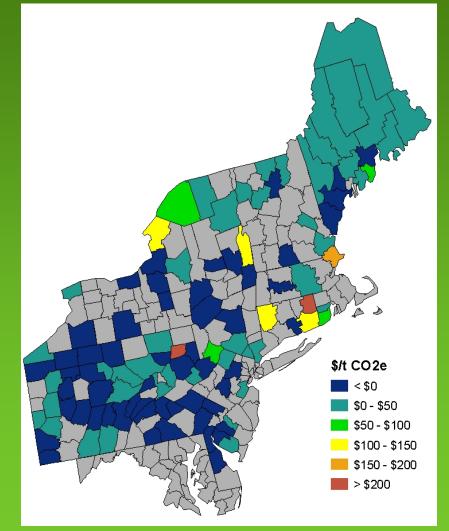

Cropland

Pasture land

Marginal Carbon Costs: Comparison on cropland between northeast and southeast for 20 year period



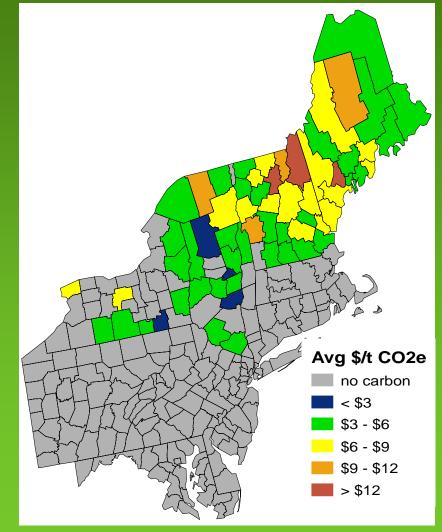
Altered Forest Management


 All options assume: "permanent contracts"
 e.g. once change the management then assume to change "forever"

Re-stocking of under-stocked stands

Potential sequestration at <\$10/t CO2e

Marginal Costs



19

5 year rotation extensions - softwoods

t CO2e (thousands) 0 **<** 100 100 - 200 200 - 300 300 - 400 > 400

Potential sequestration at <\$10/t CO2e Marginal Costs

Comparison of land use practices

Estimated quantities of carbon sequestered after 20 years, t CO₂e/acre

	Mean	Range
Agricultural Lands		
Afforestation	57	23-74
No-till	11	7-19
Permanent Vegetation	14	0-27
Forest Lands		
Restocking understocked Stands	9	<1-35
5 year Rotation Extension	5	1-9
Riparian Buffer	4	<1-22

Total potential estimated tons of CO₂e sequestered for each land use

	Agricultural Lands				Forest Lands			
	Afforestation of Cropland	Afforestation of Pasture	No-till	Permanent Vegetation	Restocking understocked Stands	5 year Rotation Extension	Riparian Buffer	
	million tons CO ₂ e							
Connecticut	6.62	16.19	0.19	0.47	0.08		0.08	
Delaware	34.73	0.26	2.08	5.32	0.23			
Maine	9.83	46.13	0.98	2.44	3.42	6.85	0.7	
Maryland	92.2	12.35	6.07	15.78				
Massachusetts	14.55	5.95	0.4	0.99	0.19		0.23	
New Hampshire	0.9	12.02	0.13	0.33	0.25	1.3	0.42	
New Jersey	4.46		1.35	3.34	0.77			
New York	98.06	339.54	7.94	19.18	2.29	2.73	0.88	
Pennsylvania	85.85	386.74	12.92	32.2	6.18		0.17	
Rhode Island	1.32	0.8	0.01	0.03	0.05		0.02	
Vermont	30.32	16.62	0.68	1.64	1.19	0.96	0.14	
All States	378.85	836.6	32.73	81.72	14.64	11.83	2.64	
Accuming 20 year pariod for agricultural lands, and permanent land management change in forest lands								

Assuming 20 year period for agricultural lands, and permanent land management change in forest lands

Area weighted mean marginal costs for all Land Uses examined (at 20 yrs)

	Agricultural Lands				Forest Lands		
	Afforestation of Cropland	Afforestation of Pasture	No-till	Permanent Vegetation	Restocking understocked Stands	5 year Rotation Extension	Riparian Buffer
				\$/t CO ₂ e			
Connecticut	87	52	18	168	404		26
Delaware	70	52	22	120	-6		
Maine	100	31	11	168	11	6	150
Maryland	121	97	22	53			
Massachusetts	87	51	14	130	65		34
New Hampshire	98	50	12	138	-3	8	103
New Jersey	100	82	23	85	-1		4
New York	99	48	19	178	-214	5	101
Pennsylvania	107	84	19	140	-58		28
Rhode Island	100	78	19	104	57		28
Vermont	90	40	14	165	-7	7	99
All States	103	64	18	139	-53	6	84
Minimum	36	13	10	-137	-1,434	3	0.11
Maximum	254	265	29	348	693	21	240
* Negative numbers in average cost estimates indicate that the projects would potentially generate profits over the cycle.							

Negative numbers in average cost estimates indicate that the projects would potentially generate profits over the cycle.

Land Use with lowest marginal cost (\$/ton CO₂e at 20 yrs)

Land Use

- No-Till
- Restocking under-stocked stands
- 5 yr Rotation Extension
- Riparian Buffers
- Non-cultivated crops

Potential area and amount of emission reductions available at price points (at 20 yrs)

	Afforestation		Crop Management		Forest Management				
Price Points	Cropland	Pasture	No-till	Permanent Vegetation	Restocking Understocked Stands	5 yr Rotation Extension	Riparian Buffers		
potential t CO ₂ e									
< \$7/t CO ₂ e		8 million		6.6 million	10 million	8.4 million	137,000		
< \$10/t CO ₂ e		8 million	1.2 million	6.6 million	10.8 million	11 million	143,000		
< \$20/t CO ₂ e		21 million	32 million	7.6 million	12.9 million	11.6 million	201,000		
< \$40/t CO ₂ e	116,000	215 million	33 million	13 million	14.3 million	11.8 million	490,000		
potential area (acres)									
< \$7/t CO ₂ e		169,000		550,000	1 million	1.4 million	79,000		
< \$10/t CO ₂ e		169,000	110,000	550,000	1 million	1.9 million	87,000		
< \$20/t CO ₂ e		351,000	5.7 million	636,000	1.3 million	2.1 million	123,000		
< \$40/t CO ₂ e	2000	3.6 million	5.7 million	1 million	1.5 million	2.2 million	193,000		

Conclusions

- Afforestation has potential to sequester large amounts of CO₂, however has higher marginal costs
- No-till, restocking under-stocked stands, and rotation extension have lowest marginal costs
- Sub-optimally producing lands will be the locations where management for carbon maximization will have low or even negative marginal costs
- Regionally, potentially 19 million t CO_2e could be sequestered for less than \$10/t CO_2e